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A AODEL ?OR SOLVING XULTIPRIOD XLTIRESERVOIR WATE R

RESOURCES PROBLEMS WITH STOCHASTIC I"FLOWS

Publication No.

Douglas DeWitt Cochard, PhD.
The University of Texas at Austin, 191

Supervising Professor: Paul A. Jensen

The model developed solves the multiDeriod multireservoir water

resources problem with stochastic inflows. Of unique importance is

'he development of a generalized network model which solves

nonlinear nonseparable quadratic problems. Quadratic functions are

used to measure the future value of water to the system. The

nonseparable form stems from the realization that interaction

exists between the benefits to be gRined from a multireservoir

system. Historically this interactive nature has been ignored due

to the computational difficulty of measuring and solving such

relationships. Also developed is a stochastic dynamic programming

approach which utilizes the results of the network optimization as

data for a least squares regression analysis. A quadratic function

is fit to this data and is used to represent the future value of ii
water to the system for the next period in the dynamic programming ---
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approach. This functional representation of the future value of

water replaces the standard discrete matrix representation of

dynamic programming and greatly reduces the dimensionality problems

associated with the dynamic programming hpproach. In the end, this

work represents a rare combination of generalized-nonlinear network

flow programming, stochastic dynamic programming and regression

analysis. Example problems are included along with an application

to a four reservoir model of the Guadalupe River Basin in Texas.
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'HAPTER I

1. introduction

1.1 leneral

During the 1970's significant advances were made on

iomputational techniques for determining optimum solutions for

network flow problems. it is now possible to solve problems of

tens of thousands of variables using only seconds of time on large

modern computers. These advances, along with their historical

precursors are described in several recent books on the subject

which include Minieka (1979), Kennington and Helgason (1980) and

Jensen and Barnes (1980).

Along with the computational advances, network models have

been applied to a wide range of problem situations. In particular,

several water resource applications are reported by the Texas

Department of Water Resources (Texas Water Development Board

(1974a, 1975)) and Jensen et al. (1974). This report deals with

the application of a new network model formulation as applied to a

water resources system.

Optimal operation of a system of interconnected water

reservoirs is an important problem in water resources management.

The limited water resources available coupled with the diverse,

often competitive, projected demands on these resources appear to

1&
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place potentially unacceptable limits upon the achievement of

economic, social and environmental goals.

The operation of a muliperiod multireservoir system

requires that the system controller make decisions regarding the

storage or release of water for each of the reservoirs on a

periodic basis. This Deriod may be daily, weekly, monthly, etc.

His decisions may be based upon the amount of water available to

him in each of the reservoirs, the types of demands for water from

the various users and upon his anticipation of the future

availability of water. Each period lends itself to a network

representation similar to the one-period, three-reservoir system

shown in Figure 1-1.

The amount of water available for distribution is a

function of the amount of water stored from the previous period,

the amount of inflow from runoff or from upstream releases within

the period and any purchases from outside sources. Most work to

date has treated the amount of water from runoff and other flows

into or out of the system deterministically. That is, all data and

parameters of the models are assumed to be known with certainty.

Thus the models represent a decision problem in which the decision

maker is faced with a great deal of complexity but no uncertainty.

The complexity makes the decision problem difficult in itself. If

there is uncertainty in the real situation it is often simply

ignored by the model.

The multiperiod deterministic model assumes that the system

-- U!
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controller knows what the future availability of water will be with

certainty. He also assumes that the demands placed upon the system

are known. With this information available to him he can then

determine an optimal set of decisions for the entire time horizon.

The neglect of uncertainty results in unrealistic solutions

where a major aspect of the decision process relates to dealing

with uncertainty. The water resources problem obviously is dynamic

in nature in that decisions must be made sequentially over time.

Uncertainty plays a significant role in the decision process due to

the unpredictabiltiy of nature in its supply of surface waters to

the system and also to the incomplete predictability of the actions

of man in his use of the available resource. It is clear that the

controller of the system must exhibit caution in setting reservoir

levels and river releases so that unlikely but possible natural

events do not cause the system to fail in its functions of

providing a reliable water supply and protection against floods.

A deterministic model does not exhibit caution in a

lynamic, multiperiod model. Since all data is assumed certain, the

future in all required detail is known. An optimum solution can be

determined which provides maximum benefit at minimum cost. A

historical sequence of water runoff and demand data might be used

to give the model "realistic" data. The one aspect of the solution

procedure which is not realistic for the multiperiod model is that

the deterministic solution algorithm has the ability to look ahead

in time and prepare for the events which are to occur. Thus,

.............. . ." - r ' " '">" .. . .. ..
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decisions obtained through the models do not tend to resemble the

real decision process. The decision maker, after all, does not

have this "look ahead" capability of the algorithm. He must maks

decisions in the face of' uncertainty and revise them as time goes

on and as uncertainties become resolved. The incorporation of'

uncertainty into a water resources model is a part of' this

research.

Another problem with most existing models is that

traditional planning methodology has generally been directed toward

the analysis Of' projects individually in in ef'fort to match

reservoir operation with anticipated requirements. When the

interaction of' individual reservoirs became more pronounced and

could not be ignored, operating criteria were often still selected

on the basis of' these single-project analyses through coordinated

single-reservoir simulation studies. It is noted however, that in a

serially connected system of' reservoirs, the value of' water stored

in a particular reservoir is af'fected by the amount of' water stored

in other reservoirs. This relationship has been neglected in the

past due to the fact that this interaction between reservoirs

suggests a nonsenarable benefit function as a function of' all the

reservoirs versus a separate benef'it function f'or each. This means

that the total benefit of' the system cannot be measured simply by

summing the individual reservoir benefits as a function of' their

contents. One reason for this neglect lies in the lif'ficulty in

determining with any conf'idence just what this joint function



should be. The benefit function that will be used herein is a

nonseparable quadratic function which measures or reflects the

current and future value of water stored by the system. Thus,

besides individual reservoir benefits, the interactive or joint

reservoir benefits will also be evaluated.. This idea combined

with the multiperiod decision process is used in a dynamic

programming approach to successively generate these benefit

functions.

This report describes a method to overcome the deficiencies

of the deterministic solutions while including the provision for

evaluating interactive reservoirs. Net-dork models are still used

but the model is changed in such a way as to exhibit

characteristics of the true decision process. Full advantage is

taken of the network structure of the problem by utilizing

extensively the computational techniques that have been so

successful for deterministic models. Embedding this network model

in a dynamic programming solution approach which begins at some

specified and finite future date and works backward in time to the

present provides the necessary data to allow the derivation of

successive benefit functions which reflect the future value of a

given configuration of reservoir contents.

Chapter 3 describes the deterministic network models and

provides a brief survey of the computational techniques used to

solve them. Chapter 3 also provides the notational basis for the

remaining chapters of the report.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

___________ T
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7n Chapter 4, the dynamic programming algorithm for solvingi

the multiperiod multireservoir stochastic problem will be

presented. Chapter 5 includes the nonlinear network solution

methodology. These network solutions embedded in a dynamic

programming methodology provide the basis for deriving a functional

representation of the future value of water in the face of

uncertainty. In Chapter 6 the statistical aspects of the problem

will be addressed.

Chapter 7 includes some example applications which are

supported by data contained in the Appendix.

1.2 Primary Contributions of This Research

One contribution of this research is the development of a

generalized network model which is capable of solving network type

problems where some of the arcs have nonlinear quadratic cost

functions. These functions are allowed to be nonseparable and the

model is solved without reverting to piecewise approximations for

the arc costs. The only restriction is that the overall objective

function which is a combination of several linear terms along with

some quadratic terms be a CONVEX cost function; or a CONCAVE

benefit function in this case. It is noted that there exists

several other techniques which could be used for this class of

problems. Some of these are listed here:

1. Frank-Wolfe Method

2. Convex Simplex Method

I



3. Method of Feasible Directions

4. Gradient Projection Methods

. Quadratic Programming Algorithm

6 Reduced Gradient Method

7. Newtons Method

S. Steepest Descent Method

9. Variable Metric Methods

- Davidon Fletcher Powell

- BFGS (BROYDEN,FLETCHER,GOLDFARB,SHANNO)

Most of these methods could be used either directly or in a

specialized manner for this class of problems. The choice of

introducing network theory as still another way to solve problems

of this nature both expands and enhances the power of network

theory as well as providing an alternative to the above suggessted

methods.

The second and primary contribution of this research

involves the integration of this network solution technique into a

much larger dynamic programming model. This larger model is used

to solve multireservoir multiperiod water resources problems in the

presence of uncertain inflows. Its uniqueness lies not only in its

use of a new network subproblem, but also in the manner in which it

utilizes future stochastic runoff information and recursively

generates benefit functions which represent the net current and

future expected benefit to the system as a function of the observed

current water levels. This functional representation allows any

U

| | .. |



!9

level to be evaluated for determining the current lecisions. This

form represents a continuous spectrum for current levels in lieu of'

the more common discretized levels in standard dynamic programming

algorithms. This means that the current levels are not required to

be equal to or rounded to the nearest discrete level which would

induce error into the results. Although a discretization scheme is

used to derive the benefit functions, it is done so only to gain a

representation of the true return "functionally". Once this

function is available, any and all reservoir levels can be

evaluated.

One main advantage of this functional approach is that it

greatly relieves the dimensionality problems associated with

discrete representation of large dynamic programming problems.

in the end, the result is a realistic and usable water

resources model since it does account for the uncertainties of the

future. It can handle larger models due to the functional

approach, and perhaps most importantly, the entire model has been

implemented into a workable computer program where it is readily

available to such users as the Texas Water Development Board.

I-i
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CHAPT ER :1

2. LITERATURE REVId

2.1 General

Most of the research involving analytical modeling of

multireservoir water systems has occured during the last 15 years.

There has been a great deal of variation in the mathematical

techniques employed. Roefs (1968), Buras (1972), and Hall and

Oracup (1970) discuss the mathematical techniques used and the

variations of the problem for which each technique is most suited.

Butcher (1973) indicates that a mathematical tool useful for one

water resource problem may not be suitable for other seemingly

similar problems. 4ultireservoir models can be roughly classified

into three categories depending upon their emphasis and scope.

1. Design Models. These types of models make decisions

concerning the construction of the reservoir system. They are

sometimes called capacity expansion models. Decisions are made

:oncerning the size, location, and time of construction of

reservoirs and canals in addition to determining water allocation.

2. Water-use Models. In these models the reservoirs are

consilered to be multipurpose; that is, several possible uses of

water are available at each rsservoir. Decisions are made

10
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I,
concerning such things as the timing and extent of irrigation for

various crops. These models most often concern a single reservoir.

3. Time Planning Models. The main objective with these

models is to determine the use and storage of water in several

interconnected reservoirs in such a way as to be Prepared for

future shortages or excesses. This research concerns itself with

this kind of model.

Typically, literature regarding water reservoir oDerations

is characterized by four primary factors. These being:

I. System - single versus multireservoir

2. Operation - single versus multiperiod

3. Inflows - Deterministic versus stochastic

4. Return or objective function - Linear or separable

nonlinear versus nonlinear nonseparable.

The mathematical models employed to model reservoir

problems have included the following:

I. Linear programming

2. Dynamic programming - both deterministic and stochastic

3. Chance-constrained linear programming

4. Decomposition approaches

o. Simulation

6. Markov chains

. Networks

9. Nonlinear programming

:n most cases combinations of the above were used.

..- ' .... . . .. 4.t
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Many authors have ised the above techniques to develop

models for single reservoir or single period systems applying both

leterinistic and stochastic inflows. These works are presented

briefly in section 2.2. Since this research is concerned with

multireservoir multiperiod systems, a finer breakdown of models as

they apply to the multireservoir multiperiod systems is discussed

in sections 2.3, 2.4, and 2.5.

2.2 Single Reservoir (single and multi period) or Multireservoir

Single Period Models:

Network models include the techniques used by the Texas

Water Development Board (1974a, 1974b) and those mentioned below.

Bhaumik (1973) presents an optimum operating policy of a water

listribution system with losses (gains less than one). Concern

here was with the economic effect of seepage and evaporation of

water from canals and reservoirs in a water listribution sytem with

reference to the Tqxas water plan. Weirs and Beard (1971) and

Evenson and Mosely (1975) present more ietailed discussions of the

Texas Water Development Board's work in time planning and design

models.

Linear programming has been applied to all types of

reservoir problems. ReVelle and Gundelach (1975) introduced a new

version of the linear decision rule in 1175. This new form permits

the minimization of the sum of the variances of releases, a

performance objective not previously subject to the control of the
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designer. The minimization of release variances of a single

reservoir allows further diminishment of losses associated with

deviations from target releases. They concluded that this new

fPomulation, while experiencing definite advantages with regards to

the minimum release level, had a disadvantage in that it required

larger reservoir capacities. In spite of this result, this new

linear decision rule makes it possible to attain release levels

that otherwise might be regarded as infeasible. Gundelach and

ReVelle (1975) then use this new decision rule and develop a

chance-constrained model which seeks the smallest reservoir

satisfying certain conditions on storage, release and freeboard.

These linear programming methods are considerably slower

than the linear out-of-kilter algorithm, but they have more

flexibility. For instance, monthly evaporation can be included in

the model as a percentage of reservoir storage. For a multiperiod

model, linear programming has the shortcommings of the necessity

for perfect information, the large size of the problem, failure to

make use of the final reservoir storage, wasted computation and of

course the restriction of linearity. As stated by Buras (1972),

"linear programming yields only point solutions in the policy

space, no matter how many dimensions the space has. Most

situations in which the state of the system changes (in time or in

space) and in which decisions have to be taken successively are

ilearly outside the grasp of linear programming". A point solution

means the set of optimal values for each of the variables, given

I ! i ! i
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fixed values for each of the Darameters of the system. This

differs from a functional type of solution where the solution

rariables are given as a function of another variable.

Dynamic programming is the most theoretically appealing

I approach to multiperiod reservoir models of all types since these

problems involve sequential iecision-making processes. Also, the

outcome of each decision (or set of decisions in a time period)

appears as a "unction rather than as a point solution. That is,

the optimal decision to be made is determined for any state of the

system. This allows suboptimal policies to be examined, a

desirable feature due to the inherent uncertainty in multireservoir

problems. This feature makes dynamic programming especially useful

for real time system operation. The limitation on the usefulness

of Jynamic programming is the so called "curse of dimensionality".

Each reservoir gives rise to a new state variable (usually the

final reservoir storage level). If there are R reservoirs and each

reservoir has K possible levels, there are KR possible state

combinations per time period. ?or this reason most of the dynamic

programming modeli have been for systems with either one or two

4 reservoirs.

Buras (1q72) fixes four or five as the maximum number of

reservoirs that can be handled computationally by dynamic

programming. Dynamic programming also fails to take into account

the stochastic nature of the multireservoir problems. This can be

rectified by asing stochastic dynamic programming as was done by

- -- l l l l I l l l
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Driscoll (1974).

Burss (1972) presents a dynamic programming formulation for

a design type model and for a water-use model. Young (1967)

zombines dynamic programming with a simulation approach.

Butcher (1973) defines stochastic dynamic programming to be

those formulations of dynamic programming in whioh the value of one

of the state variables is related in a probabilistic way to the

Value of that same variable in adjacent time periods. in terms of

multireservoir problems, stochastic dynamic programming allows the

rainfall and demand (or net demand, ie. demand minus inflows) at a

reservoir in one time period to be dependent probabilistically on

the net demand at that reservoir in the previous time period. The

optimal policy developed is that which minimizes expected costs for

the system. As with traditional dynamic programming, the optimal

policy is in a form that can readily be used for real time system

operation. However, the dimensionality problem is compounded due

to the additional state variables which are the net demands at the

various reservoirs in the previous period.

Due to the dimensionality problem, stochastic dynamic

programming models have been applied mainly to water-use models,

rather than other models which tend to have more than one

reservoir.

Butcher (1971) presents such a model for one multipurpose

reservoir. Loucks (1969) presents three stochastic dynqmii

programming models that he ised to define operating policies for

4,

____ ___ ___ ____ ___ _ - *'-'-~-~ *



16

several of the ?inger Lakes in New York. These are also one

reservoir models. Instead of economic objectives, Loucks minimizes

the sum of squares of the departures of releases from a set of

target releases specified by the state.

Chance constrained linear programming is another tool that

has been applied to multireservoir problems in an attempt to

account for stochastic variation. Like determiinistic linear

programming, this method is more suitable for design or water-use

models than it is for time planning models. 'The fact that point

solutions are found, causes chance constrained linear programming

to be less applicable to real-time system operation over a long

time snan. Loucks (1969) proposes a one-reservoir water-use model.

ReVelle at al. (1975) considered the use of linear decision rules

and the development of a stochastic model in 1969. in 1975, Loucks

and Dorfman (1969) compared several chance constrained linear

decision models for reservoir planning and operation. Their basic

conclusion was that while all results of the four decision rules

considered were within the constraints of the problem, all tend to

yield overly conservative results. They state that linear decision

rules permit the use of linear programming methods for solving what

would otherwise be a very messy nonlinear stochastic optimization

problem. This is indeed a mathematical advantage, but at the same 4
i

time, these linear decision riles reduce considerably the number of

'P WO!,. *- ZT W ~
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possible operating policies that can be considered. Hence, the
d;

rule itself is a constraint imposed for mathematical reasons.

Klemes (1977) and Doran (1975) discuss the problem of

selecting discrete reservoir levels and how the "curse of

dimensionality" can be overcome by using a method called the

divided interval technique. This technique differs from the

traditional discretization method primarily in the precision with

which the two boundary states are represented. The traditional

method developed by Moran (1954) tends to over estimate the

probabilities of emptiness and fullness, thereby underestimating

the intermediate levels. Klemes and Doran show that for equivalent

results, 5-10 discretizations using the divided interval technique

corresponds to approximately 30 intervals using the traditional

method.

The remaining mathematical methods have been less used and

are not easily classified. Parikh (1966) and (1967) presents a

linear decomposition method designed for use in a northern

Zalifornia system. Young (1967) combines lynamic programming with

Monte-Carlo simulation of stochastic inflows. Su and Deininger

(1971) present a Markov-chain approach for serially connected

reservoirs. He solves the Markov system by a method of successive

approximations rather than by dynamic programming.

2.3 Deterministic Inflows and Linear or Separable Nonlinear

Objective Function:

rI
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Within this category of multiperiod multireser.,oir systems

many techniques, have been used. Several authors used a linear

programming approach. Drobny (1971) was concerned with water

quality and quantity problems. Ialcedo (1972) dealt with a

water-use model. lannos (1955) was concerned with the efficiency

of operation of a system of dams and Mejia et ci. (1974) evaluated

multireservoir operating rules using linear programming.

Schweig and Cole (1968) used dynamic programming to deal

with random inflows having first order serial correlation. The

distribution of these random inflows was approximated by discrete

probability space. This correlation was simplified by classifying

the inflow data according to whether an item was preceded by an

inflow higher or lower than mean for the antecedent month. Rood et

al. (1973) presents a dynamic programming model for the

time-planning variety that is especially designed for serially

linked reservoirs thereby reducing the state space dimensionality

problem.

Fults and Hancock (1972) use state incremental dynamic

programming to find the optimal operating policy for a four

reservoir system. The objective is to maximize power generation

while Fatisfying firm water contracts, enhancing environmental

aspects and providing flood control.

Heidari et al. (1971) and Meredith (1975) use a technique

called discrete differential lynamic programming (DDDP). This is an

iterative method that eases the state dimensionality problem by
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starting with a trial trajectory satisfying a specific set of

initial and final conditions and applies Bellman's recursive

equation in the neighborhood of this trajectory. At the end of

each iteration a logically improved trajectory is obtained and used

as the trial trajectory in the next step.

Becker and Yen (1974) use a combination of linear and

dynamic programming for the optimization of real time operations of

a multireservoir system and Hirsch et al. (1977) combine linear

programming with simulation techniques.

Prekopa at al. (1968) address serially linked reservoir

Jesign by attempting to meet all demands with a given high

probability. Their objective is to minimize the sum of the

building costs and penalties incurred for unsatisfied demand.

Their method if solution uses a sequential constrained minimization

techni.-e 'S3UT) with a logarithmic penalty function. A

disadvantage of this approach is that under certain circumstances

not all demands ian be met with the lesired probability.

Jensen et al. r1974) represent a multireservoir multiperiod

system using networks. Here, the network for each period stays the

same with inclusion of a set of storage arcs to join the networks

from one period to the next. Kerr (1972) combines linear

progrmming and the out-of-kilter algorithm and applies these to

the Saskatchewan-gelson river basin in Canada. He compares

multiresertoir analysis techniques by considering 53 possible

future storage reservoirs and 22 diversion possibilities.
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Hirsch, Cohon and ReVelle (1977) developed a hypothetical

iesign for the sizing of three reservoirs in parallel. They

recognized that there are benefits due to the joint operation of a

system of reservoirs in excess of the benefits from optimal

individual operation. Basically, they concluded that within

reasonable limits any combination of three reservoirs whose

capacities sum to the same total capacity has nearly the same

maximum system yield. Their objective was to meet all demands,

which were deterinistic, while not accounting for spillage or

evaporation. The method of solution involved simulation of five

years of actual data and a linear programming optimization model.

Windsor and Chow (1972) present a mixed linear programming

model with integer variables that is a combination design and

water-use model. The linear programming method appears to be more

s3uitable for models of these types where the number of time periods

:an be kept to a minimum. They consider their model a practical

ine computationally. but admit its weakness in not considering the

3tochastic nature of the problem. %Meier and Beightler (1967) use a

iecomposition method for branching multi-stage water resource

systems.

In the area of separable nonlinear objective functions, Lee

and Waziruddin (1970) use two approachs, the gradient projection

and conjugate gradient method,. They consider the Drofit accrued

from irrigation and the benefit received from recreation to be

q.uadrqtic functions. Roefs and Bodin (1971) use separDble

.1
_________
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programming with Dantzig-Wolfe decomposition.

2.I Deterministic inflows, Non-Separable Objective Function

:n this category, Gagnon et al. (1974) use a generalized

reduced gradient approach to a very large hydroelectric system.

Lasdon (1976) and TVA (1974) also use generalized reduced gradient

methods as applied to water resource systems. Trott and Yeh (1973)

use a stepwise state variable incremental dynamic programming

approach and TVA (1974a) used a dynamic programming successive

approximation approach.

Lui and Tedrow (1973) use dynamic programming and a multi

variable pattern search. This multi variable polynomial objective

function represents the current and future economic losses to the

system. This function is determined by regression analysis where

the states or reservoir levels are the independent variables and

the functional return is the dependent variable. This method of

representing future economic losses functionally tends to eliminate

the problem of limensionality. They use a random sampling

technique to assure unbiased and efficient selection of initial

state variable level combinations. In Rosenthal (1977), a

multiperiod multireservoir release scheduling for maximum

hydropower benefit was formulated by the Tennessee Valley Authority

as an ostimization model with a nonseparable nonlinear objective

function and linear network constraints. Rosenthal presents a new

solution technique based on reduced gradient techniques and on

I
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primal linear network flows. An unusual feature of the algorithm

is an integer programming subproblem whose exact solution

determines the search directions. Test problems were run on a six

reservoir TVA system. His network is somewhat unique and

constrained in that the system is required to be an arborescence.

An arborescence is a tree with the property that no two arcs are

directed away from the same node, and a tree is a connected

loopless network. Thus, in this case, no provisions are made for

pipeing or channeling water to other locations. All water flows

downstream to the next reservoir in series.

2.5 Stochastic Inflows and inear or Separable Nonlinear Objective

Function

Consideration of the stochastic nature of inflows to

reservoir systems for multireservoir mrultiperiod systems has just

recently begun to attract attention. Sobel (1975) analyzes the

structure of optimal policies for several discrete time control

models of reservoir storage using dynamic programming. Most of the

models considered are stochastic and are prompted by operating

problems of regulating the amounts of water discharged from

reservoirs. He develops an analogy between models of multiple

reservoir systems and of multi-item inventory models. Pinter

1976) uses a stochastic dynamic programming method. Driscoll

(1914) uses a stochastic dynamic programming approach to a

multireservoir multiperiod problem that uses a revised nonlinear

21
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out-of-kilter algorithm developed by Jensen and Reeder (1974) at

each stage storing the results in a benefit matrix. 3y assuming a

cyclical pattern he repeatedly cycles through the periods until

zonvergence of the benefit function is attained. This revised

out-of-kilter algorithm allows convex functions and a limited type

of nonseparable cost functions. This method allowed him to

consider systems with five reservoirs without too much difficulty.

Chu (1980) developed a method to deal with stochastic

situations with recourse. His work involved a two stage decision

process whereby an initial decision was made based on expected

demands and then as actual demands became known, a second decision

(the recourse) was made to satisfy all demands. His objective was

to minimize the sum of the costs from the first decision and the

expected penalty costs as required by the recourse actions.

Roefs (1968) presents a stochastic dynamic programming

formulation for one and two reservoir systems.

Turgeon (1980) uses two mathematical manipulation

techniques to solve problems too large for dynamic programming.

7. The one at a time method, which breaks up the

multi-variate problem into a series of one state variable

subproblems, and

2. Aggregation/decomposition method which breaks up the N

state variable problem into I subproblems of two state

variables.

3oth of these methods are then solved using dynamic programming.



24

He applies these methods to a six reservoir system where the

inflows are assumed normal with a mean and variance corresponding

to those of the Quebec river historical data.

Joeres et al. (1971) considered chance constrained linear

programming in conjunction with linear programming techniques in

deriving operating rules for joint operation of raw water sources.

Curry and Helm (1972) present a chance constrained model for a

single multipurpose reservoir and then Curry et al. (1972) extend

this to a system of linked multipurpose reservoirs. They allow the

unregulated inflows into each reservoir at each time period to be

stochastic with a known probability distribution. There is

independence between the reservoirs and for the same reservoirs in

different time periods. They show how their formulation reduces to

a deterministic linear programming model.

Helm, Curry and Hasan (1972) present a design model for a

system of reservoirs. This formulation employs a mixed continuous

and integer linear programming form that is solved by Benders

decomposition method.

Sigvaldason (1976) uses simulation and the out-of-kilter

algorithm and applies his model to the Trent River system in

Ontario, Canada. He divides each reservoir into five storage zones

and applies penalty coefficients for any deviations from ideal

conditions as applied to these zones. Bodin and Roefs (1971) use

separable programming and the Dantzig-Wolfe decomposition method.

Houck and Cohon (1979) utilized a sequentially explicitly

4- | |- ... |- . .. - , .
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stochastic linear programming model (SELSP) to determine a design

and management policy for a two dam system. Their process was to

sequentially solve policy and design linear programming models

which are formed by specifying minimal portions of the nonlinear

program. The major weaknesses of the model are high data

requirements and computational burden. They propose a method of

mitigating both deficiencies while explicitly retaining the

interaction of the reserroir system. The system coordinated

performance individual operation (SCORPIO) method provides the

necessary information to evaluate the interaction among facilities

in a multireservoir system. It is a way to utilize the available

data efficiently and its use makes the use of SELSP models

practical. Basically, SCORPIO solves the individual reservoir

design and operating problems, and then system-wide performance

characteristics are obtained by using expected values and

correlations between streamflows at all of the sites.

Takeuchi and Xoreau (1974) use a combination of linear

programming, dynamic Programming and regression analysis. The

monthly operating decisions are given by solution of a piecewise

linear program, the objective function for which consists of two

parta. One, the immediate economic losses within the month, and

two, the expected present value of future losses as a function of

end of month storage levels. These expected losses are ietermned

by imbedding the linear progrcm in a stochastic dynamic program.

Their loss 'unctions were constrlcted in accordance with the

4W
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following:

1. Diminishing marginal utility of water

2. Deficits involving high proportions of' nominal municipal

water use were considered catastronhic

3. High rates of deficit in low-flow augmentation also

created serious damage.

They applied their model to a five reservoir system in the Piedmont

region of' North Carolina.

2.6 Summary of Literature

in summary, none of the literature reviewed addressed the

full combination of multireservoir, multiperiod, stochastic inflows

and nonsenarable objective functions. Rosenthal (1980) made this

same observation after having researched over 100 articles.

The chapters to follow present a new approach for this

c.ombined set of conditions. The methods employed primarily use

networks, dynamic programming and regression analysis. The manner

in which these are used encompasses the stochastic nature of

inflows using a Monte Carlo approach.

p~4- - -



CHAPTER III

4 3. The Deterministic Model

3.1 The Network Model

This chapter is used to describe the network flow model,

introduce the notation to be used throughout the report, and review

f the solution approaches used to solve deterministic problems. The

latter are used extensively in the algorithms which solve the

stochastic problem as well. This chapter is taken from Chapter 11

of Jensen et al. (1980), co-authored by the author of this report.

A network flow model is simple in the sense that it

requires very few kinds of structural elements and parameters to

describe it. A complex model is constructed from imaginative

arrangements of these simple elements. Figure 3-1 illustrates the

basic structure of a network. The network consists of nodes and

arcs. T-he nodes are represented by circles with the inscribed

number used for identification. For general reference lower case

letters such as i and j are used to refer to nodes, where the

letters symbolize numeric identifiers. Arcs are the directed line

segments going from one node to another. Consider the general arc

k (k refers to a numeric identifier assigned to the arc)

originating at node i and terminating at node j. Frequently the

notation k(i,j) is used in cases where it is important to emphasize

27
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10i (f,,C,h,a)

2 Eb]

Figure 3-1
The Basic Structure of' a Network
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the identity of the nodes touching arc k.

The variable quantities associated with the network are arc

flows. The symbol fk represents the flow in arc k. The

optimization problem is to determine the values of f for each arc
k

which minimize some criterion subl'ect to certain constraints. This

criterion may be cost, time, distance, etc. The criterion and

constraints are defined below.

Associated with each arc k are four parameters: lower bound

on flow, .; upper bound on flow, -k ; marginal cost, hk; and gain

a,. Parameters and variables associated with arcs are shown in

parentheses near the arc.

The values of 2k and ck provide simple bounding constraints

for the flow on arc k:

-" k i - Ck

'he value of h. indicates the marginal change in total cost with

respect to f" In linear problems hk is a constant independent of

the value of fk and the cost of flow on arc k is:

hk fk

A variation in the form of the arc cost function is presented in

7hapter 5 where we will introduce a quadratic cost function.

The value of a, the arc gain, allows the flow to increase

or decrease as it passes through the arc. For an arc k(i,j) the

flow leaving node i is f," The flow entering node j is a,f,

Whether flow increases or decreases as it passes through the arc

lepends on the value of a,. If ak 1, the flow decreases. When

k'- k

!P
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ak >1, the flow will increase. If ak <0 the flow leaving node i with

value fk causes a flow akfk  to leave node j in the direction of

node i (on arc k). This strange possibility has some applications

and is allowed by the algorithms. It is only required that ak40

for all arcs. A network in which all gains are unity is called a

pure network, while the presence of one or more nonunity gains

results in a generalized network.

There are also parameters associated with the nodes. Node

parameters and variables are shown in brackets adjacent to the

nodes. The most important is node external flow, b. for node i.1

This parameter represents flow entering or leaving the network from

external sources at node i. Use b.>O to imply flow entering node
3.

i. If b.<O, flow leaves the network with magnitude b. . When1 1

b,.O, no flow enters or leaves the network at node i. In the pure1

network, the sum of the flows entering the network will equal the

sum of the flows leaving the network.

Additional node parameters are slack external flow, bsi,

and slack external cost, hsi. If bsi >0, then flow may be obtained

from external sources at node i at a cost h . per unit. The amount

of slack flow, fs is a variable bounded by zero and bsi. When

b <0, then flow may be removed at node i at a cost of h . per

unit. The amount of slack flow here is bounded by zero and -bsi.

The sign is used only to indicate the direction of slack flow.

These slack external flows are very useful modeling tools.

One additional constraint tyge that relates the flows in
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the network is the requirement that flow be conserved at each node.

This means that the sum of the flows leaving a node on the arcs of

the network less the sum of the flows entering the node on network

arcs must equal the external flow at the node.

The linear network flow programming problem can be written

in algebraic form with the definition of some additional notation

as shown in Table 3-1. With the objective of minimizing costs, the

problem is written as follows:

Model I

,Minimize Z = hf + h f
s s

st

fk f ki f sik b i for i=1,..

k . fk ck

0 < f . < b . for b )0-- k - k- Sc

0 < f. < bi for b. < 0
- S- S1

f .-0 for b s0

k , i N

Table 3-1

Definition of Notation

Notation Definition

m Number of arcs in the network

M Set of arcs mw(l,2,3,...,m)

a Number of nodes
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N Set of' nodes N'(1,2,3,...,n)

Set f acs tat rigiateat nde

XT Set of arcs that oerginate at node i

Vector of' arc lower bounds

c Vector of' arc capacities

h Vector of' arc marginal costs

a Vlector of' arc gains

b Vector of' fixed external f'lows

f' Vector of' arc flows

b Vector of slack external flow bounds

h Vlector of slack external costs

f Vector of slack external flows

?or purposes of' the algorithms to follow, two

transformations which allow a somewhat simpler network model are

now described. In the algorithms these transformations are

automatically performed by the computer programs. First eliminate

slack external flows. This is done by creating a new node called

the slack node at which conservation of flow is not required. The

value of' n is increased by one to account for the slack node, and

this new node is assigned the index n. Now each slack external

flow is replaced by an arc which originates or terminates at the

slack node. For each positive value of' b. at node i, create an

arc from node n to node i with capacity b and cost h F. or each
si

negative value of b S'create an qrc from i to n with capac ity
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Ib siand cost h..i The lower bound is set to zero and the gain is

set to one for these arcs. Now the network has no slack external

flow parameters but rather slack external flows are represented by

arc flows to or from the slack node. The arc set is expanded to

include these new arcs.

The second transformation makes all arc lower bounds equal

to zero. This is illustrated in Figure 3-2. Here, for each arc

k(i.j) with a nonzero lower bound, , adjust arc and node

parameters as follows:

s

C' - c

ck ck -2k

2. . -..

b b

The primed parameters are the transformed parameters which will be

used by the algorithm. The effect of the transformation is to make

all lower bounds zero. Hence, they no longer need be considered

explicitly. To recover the solution to the original problem, a

reverse transformation is required after the problem is solved.

Let fk be the flow in arc k obtained by the algorithm and f' be the

flow corresponding to the original problem. Then:

k =k+-k
The cost of the solution must also be adjusted accordingly. Using

the same prime notation the cost of arc k for the original problem

is:

h k kf, '
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ii

Figure 3-2

Transformation to Remove Arc Lower Bounds

A
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With the transformed parameters, the minimum cost

optimization problem now becomes:

Model II

Minimize hf

St.

fk'< k i-n-
k- MOkfk'b, '

Note that no conservation of flow constraint is written for the

slack node as this constraint would be redundant.

Model 1 is a bounded variable linear program. The matrix

of conservation of flow constraints has only two nonzero entries

for each arc, one equal to *1 and the other equal to -ak. When all

b. are integer and all ak are unity (the pure problem) the optimum

flows will be integer. The flows will not in general be integer

for the generalized problem.

4~ - 2. _______
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3.2 Network Model of the Multireservoir System

3.2.1 The Multireservoir System

One of the principle ingredients which supports life,

industry, agriculture and the environment in general is water.

Critical to the continued preservation of life is the intelligent

and efficient use of all available water supplies. This has

already become a major problem for many nations of the world, and

fresh water supplies are becomming more and more in demand as the

population increases and as new or improved industrial techniques

require it. Vater sources are typically divided into ground water

and surface water, and within the surface water category they can

be broken down into river sources, reservoir or lake sources and

perhaps even ocean sources. The models to be developed in this

report deal strictly with surface water supplies in the form of

rivers and reservoirs.

Many regions of the world and of the United States in

particular depend upon rivers as their primary source of fresh

water supplies. Areas that depend upon this form of water supply

are highly dependent upon rainfall as their source. Consequently,

during periods of low rainfall or drought conditions, river flow

may be dangerously low, effecting both the amount and quality of

water supplied. Conversely, during periods of heavy rainfall, the

surrounding communities are dependent upon the river's ability to

remove the excess water and to prevent serious and costly flooding

t:
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2onditions. ?or these reasons and others, iams have been

constructed along existing rivers which back up the water above the

dam, creating man-made reservoirs. ?igure 3-3 shows a hypothetical

river system with two reservoirs. The watershed for a given

reservoir is that geographical area whose runoff ultimately drains

into the reservoir. In the case shown the watershed for reservoir

I includes all of the area upstream from the dam, whereas the

watershed for reservoir 2 includes the area between the two dams.

Reservoir 2 also receives water from the releases of reservoir 1.

Many users draw their water directly from the reservoirs

rather than from the river. Since these reservoirs act as large

holding tanks, the supmly of water can be regulated partially

through the operation of the dams. The regulation of water supply

tends to reduce the possibility of low water supply conditions by

storing up water for approaching dry seasons and can act as a flood

control system by lowering the reservoir level prior to pending

rainy seasons.

Recognizing that decisions must be made periodically

(daily, weekly, monthly, etc.) as to the operation of a system of

reservoirs, it is logical to consider this as a multiperiod

decision problem. Within each period, decisions must be made as to

how much water to supply to each of the users, how much to release

downstream and thus how much to hold in the reservoir for use in

the next oeriod. The model which will be develond in this rqmort

will provide this inforation for the multiperioi problem.

-A
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Reservoir 1

D am

Watershed

Watrshed

Figure 3-3
Hypothetical River with Two Reservoirs
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1.2.2 The Single Period Model

In this section the network model for a single period of

time is constructed. In a later section it is expanded to multiple

periods. The single period model compresses all flows on a

particular facility (ie., inflow, river, demand, or reservoir) into

a single number which represents the total flow for the period.

Thus all detail on flow variations within the oeriod are lost.

This discretizing of time is a necessary approximation to make the

model of this report computationally practical. The selection of

the time period is an important step in the modeling process.

Different applications might lead to different selections. Thus, a

time period of a iay or even several hours might be necessary for

the control of a flood condition, while a planning model for water

supply could use a model with monthly or seasonal periods.

First the demands for water are modeled. For convenience

the models of this report show all users drawing water directly

from the reservoirs. All users at a particular reservoir are

combined into a single equivalent user. It is easy to enrich the

model for more complex arrangements by adding more nodes and arcs

along the river reaches. Demand is not a fixed withdrawal of

water, but rather is measured for each reservoir by a monetary

benefit function for water used. Realistically one would expect

that a benefit function would be a concave function exhibiting

decreasing marginal return as illustrated in Figure 7-4. For this

a7 I l l i i
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Total
Benefit

300

200

.00

5 10 15 Demand

Figure 3-4

Total Benefit for ;'ater Provided at Reservoir 1

Marginal
Benefit

30

20

10

5 10 15 Demand

Figure 3-5

Marginal Benefit of Water Provided at Reservoir 1
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reDo rt a Diecewise linear qpnroximetion for benefit is used with

the marginal res:urn decreasing in steps as shown in ?igure 3-5.

Although it is recognized that providing a benefit function of the

tyoe iescrtbed is not an easy task, it is required that one be

estimated for each equivalent user.

The network model representing users for each reseroir is

illustrated in Figue 1-6. Each reservoir is represented by a node

in the single period model. ?or the example, nodes I and 2

represent reser-oirs 1 and 2 respectively. Each user is also

represented by a node. A node is also provided for the ocean. The

three arcs connecting each reservoir node with the associated user

node represent the piecewise linear approximation for the benefit

of water to the users. Since the network model uses only cost, the

benefits are shown as negative costs. Each of these arcs has a

Iemown capacity which represents the step in the piecewise function.

Figure 3-5 shows the marginal benefit for water provided at

reser-roir 1. Thus, if 0 to 5 units are provided to user 1, the

benefit is $30 per unit. The marginal benefit for 5 to 10 units is

$20 and the marginal benefit for 10 to 15 units is 310. To

represent the benefit function as a cost, one must take the

negative of the benefit function. T"he cost function thus formed is

convex. A negative slack external flow must be provided at eqch

user node to allow flows to leave the network.

Another important aspect of the single period model has to

do with river flow. Rivers are represented by arcs between

4 __
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Figure 3-6
Two Reservoir System with Demands
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reservoir nodes or from a reservoir node to the ocean node.

:onditions may exist whereby an especially low or high flow would

be undesirable. Consequently, additional arcs can be added to this

network which wouli place a premium on meeting certain low flow

conditions and a cost on high flow conditions. Network models allow

a lower bound on an arc which forces the system to supply at least

a specified minimum amount of flow to that arc. However,

conditions may exist in which there is not enough water available

to orovile even this minimum amount of flow, thus resulting in an

infeasible solution. Another way to handle this which is more

general in nature and circumvents this irawback is shown in Figure

~3- 7.

Here, the arcs between reservoirs represent a Diecewise

linear function where each arc has a given capacity. The capacity

of the arc with a cost of -10 may represent the lesired minimum

flow in the river during the period. The negative cost will tend

to provide that flow if enough water is available in the system and

if other needs (also measured by negative costs) are not more

important. The capacity of the arc with zero cost would represent

the safe flow levels of the river, between low flow and flood

conditions. The arc with the high positive cost wouli represent

flood conditions and its capacity should be set very large (again

so as not to create an infeasible solution in the event of

extremely large quantities of water available). The cost is the

penalty of allowing a flooding condition. All of these arcs would

. .. . .-.- ,- . .. .. . . .-
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Arcs Representing River Reaches
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have zero as the lower bound on flow. Naturally, additional arcs

oull be used which might be necessary to properly reflect the

results of rapidly increasing hazardous and costly flood conditions

which would obviously not be linear from the onset of a flood to a

massive flood condition. These river level arcs measure costs to

the current period. The total cost curve of the three arcs

originating at node 1 and terminating at node 2 appears as Figure

3-8. Again, this cost function is convex.

For the single period case, the water level in the

reservoirs may also be important to the area for such things as

wildlife, sports and environmental issues. Of primary concern

might be the quality of water ifP the reservoir is allowed to go too

low and the safety of local areas if the reservoir is allowed to

rise too high. These concerns can be reflected in the network by

using parallel arcs to represent each reservoir. That is, provide

arcs to indicate minimum, acceptable, and maximum reservoir levels

just as was done for the river reaches. This could be done as

shown in Figure 3-9. Here, the arcs from node 1 to node la have

been added to represent (-10) the low condition, (0) the safe range

and (10) the high level case. Capacities on these arcs will

indicate the ranges over which the given costs are applicable.

These arcs perform the very same function as the river reach arcs

and their total cost curve would be the same form as Figure 3-8.

The flows in the reservoir arcs of Figure 3-9 represent the

water stored at the end of the period for use in following periods.
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lain factors could be used on the reservoir or river arcs to

represent losses due to evaporation or seepage (the gains would be

less than one). For the single period problem, water allocated to

the reservoir arc3 will leave the network. Thus nodes Ia and 2a

would have negative slack external flows. Since the flow in

reservoir arcs is limited by arc capacities, the slack external

flow should be at least as large as the sum of the arcs entering

the node and have a slack cost of zero. For the multiperiod case

nodes Ia and 2a will be nodes in the network model of the following

period.

'ii that remains for this single period model is to provide

a source of water to the network. Inflows may be of several types,

including runoff and ground seepage due to rainfall, returns from

urban and industrial users and imported water as well as the

reservoir waters saved from the previous period. All of these

will be represented by positive fixed and slack external flows at

the nodes of the network. Fixed external flows are used for inputs

that are not optional and must be forced on the network such as

deterministic runoff, return waters and reseL-voir contents at the

beginning of the period. Slack external flows can be used for

optional inputs such as imported water.

lote that allowing inflows at nodes discretizes the

locations of the inflows. Thus although runoff and irrigation

return flows are nonpoint inflows, they are approximated as point

inflows. 'The effects of this approximation are diminished if more

ri
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river reaches (hence more nodes) are defined.

The inflows to the system caused by rainfall are, of

course, not known with certainty. it is this aspect of the system

model that will receive the most attention in the chapters to

follow. Various assumptions will be made about the knowledge of

water inputs and the decision options available to the controller

of the system. In this chapter, it is assumed that all external

flows are deterministic and thus known with certainty. The values

chosen can be the expected value derived from statistical analysis

of historical runoff records or they could be specific historical

sequences imposed on the system to measure the effectiveness of the

sys tern.

The entire two reservoir single period model as a network

is shown in Figure 3-10. All parameters shown previously were for

illustrative purposes and are not intended to represent realistic

values. Future network representations will be of this form,

however, in most cases the multiple arcs between nodes will be

shown as a single arc for clarity.

3.2.3 The Multiperiod Model

For the single period system liscussed above, it is assumed

that the lecision maker or system controller has access to the -

required data to provide the appropriate measures of benefit or

cost for the various network components (demand, river levels,

reservoir levels) as well as the rainfall data. It has also been
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assumed that these benefits can be represented as piecewise linear

functions. These benefits are strictly in terms of current period

benefits, that is, no benefits have been specified beyond the

current period. For the single period problem, the decision maker

observes the initial reservoir contents, calculates an expected

inflow and solves the single period model to determine his optimum

decisions. This process is repeated in exactly the same way for

each successive period. There is a major drawback to this single

period decision approach. The decisions made in one period have a

direct effect on the possible options available in the next and,

in fact, in several of the succeeding periods. The decisions in a

given period should be made to maximize not only the current

benefits, but also the future benefits. This will be done by

introducing a multiperiod model that explicitly takes account of

the tradeoffs between current and future uses.

The multiperiod model is constructed by providing a single

period model for each period under consideration. The single

period models are linked by the reservoir arcs as shown in the four

period example of Figure 3-11. The reservoir arcs allow water

stored at the end of one period to be used in the following

periods. The amounts of water stored, represented by arc flows,

are variables of the optimization. For simplicity, Figure 3-11

only shows one arc in each of the parallel arc sets of Figure 3-10.

The node-arc structure of the single period models in the

combination are the same, but the external flows, arc costs and arc

- -- :~u"-~' 'm-m
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capacities, which represent the supply and demand of water, will

undoubtably vary over time. For instance, the example of Figure

3-11 might represent a one year time interval with the four single

period models representing the four seasons. Figure 3-t2 provides

a more general schematic of a larger multiperiod model. Here, the

single period models are represented by boxes with flows in period

t given by the vector Ft. Inputs and outputs are shown by the
T

vector quantities a nd 0t. The reser oir arcs interconnect the

periods. $, is a vector of water quantities stored at the end of

period t. Thus, S is the initial reservoir contents and 3 is the
0

reservoir contents at the time horizon. For the deterministic

model, all inflows must be given (perhaps in the form of a

historical sequence of runoff data). Optimization of the network

model will provide a policy for operation of the system in each

period stated in terms of the arc flows.

One possible way of utilizing such a solution in a

stochastic situation, where inflows are actually unknown, is to use

the solution as a guide for policy in the first period. Then when

the actual inflows are known for the first period along with the

final reservoir contents, the model can be solved again to obtain a

better solution for the second period. The process continues as

time progresses by solving the problem for each neV Deriod as the

lata for the previous period becomes known.

U-. - - --- --- - -- - --------- ~------------------ ..---- * 2 7r
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3.3 Solution Procedure for the ?urs Deterministic ?roblem

The network models which -re used to describe -he

leterministic water resource system have the general iathematical

fo-m of Model :1 which is repeated here for convenience.

Model TI

(Is)

0Jbjective:

4inimize Z=th

(b)

Constraints: Conservation of flow at each node:

f,<- ijfcmbi for -,, in

Arc capacity:

?4c fc_  . for keM

Since this problem is a linear programming problem, the

well known methods of linear programming should, and do provide a

solution procedure. This section describes in general the primal

simplex procedure as specialized to the network flow problem.

Computer solutions of network optimization problems are described

in a book Network Flow Programming by Jensen and 3arnes (1990).

The procedures described in the remainder of this report rest

heavily on the contents of this book. This section is provided to

survey the conceptual ideas of the simplex technique applied to the
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generalized network minimum cost flow problem.

3.3.1 The Primal Solution

Every linear program has an optimal solution which is a

basic solution. For the network problem a basic solution is a

selection of n-I arcs (variables) which form an independent set. A

selection forms an independent set if the columns from the

conservation of flow equations (ib) associated with the set has a

nonzero determinant. The basis for the generalized problem iill

always be a collection of a single tree rooted at the slack node

and zero or more semi-trees chich include a cycle. An example

problem is shown in Figure 3-f3. A basis for this example is

illustrated in ?igure 3-14. A tree is a collection of arcs on

which no cycle can be formed (neglecting arc lirections). A

semi-tree will have a single cycle with perhaps trees rooted at

nodes on the cycle. Trees and semi-trees will always be

represented by directing the arcs in such a way that there is a

directed path from the root to every node. This may necessitate

reversing the direction of certain basic arcs. This is done by

including mirror arcs in the tree. A mirror arc is given the index

-k (corresponding to the forward arc k). While arc k originates

and terminates at nodes i and .j respectively, arc -k originates and

terminates at nodes j and i respectively.

)nce a basis is chosen the remaining arcs are called

nonbasic arcs. A basic solution is formed by first setting the

.... .. .._•_... . __ "T"". I -i--
-q
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Basis for the Example Problem
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flow on each nonbasic arc to either zero or to the capacity of the

arc. The flows on the basic arcs are then set to values whichS

assure conservation of flow at each node. Given flows for the

nonbasic arcs, the flows for the basic arcs are uniquely determined

by the external flows at the nodes. The basic solution may or may

not be feasible. It is called a feasible solution if the flow on

each basic arc satisfies the bounds on the arc:

Scfkck for k& MS

Here KB is the set of arcs in the basis.

There are many basic solutions. For each selection of n-1

independent arcs to form a basis, there are 2m- n ? possible ways to

assign flows to the nonbasic arcs. There may be as many as (Mn-
ways to choose the basic arcs. Thus, an upper bound on the number

of basic solutions is:

(m )2m
- n 1

Linear programming theory tells us that if a feasible solution

exists, at least one of this large but finite set will be an

optimum solution. It is up to the optimization algorithm to find

and identify which one.

92

3.3.2 The Dual Solution

Associated with every linear programming problem is another

linear orogramming problem called the dual problem. "he dual of the

network problem will not be described here but the dual variables

will be used to check a basic solution for optimality Ind to direct

... P.
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the search for an optimum basic solution. The dual variables are

associated with the nodes and are called the node potentials. The

node potential for node i is symbolized as 7r.
OL

For a given basic network there is a corresponding dual

solution which can be found by requiring for each basic arc k(i,j)f" that the following equality hold:

(2)

7-(+hk)/a, for k(i,j)e M

if a mirror arc -k(j,i) is in the basis it is required that:

(3)

-(Wh/a) for -k4EM
I ~j -k -k 'B

Assigning the parameters to the mirror arc in relation to the

forward arc k(i,j) is done as follows:

h_k -hk/ak

a k=I/ak

Equation (3) combined with equations (4) yields:

7ri" (7?hk/akak

or

X- h,) /a

which is equivalent to equation (2).

Note that equation (2) defines a set of n-I linear

equations in n variables. Arbitrarily assigning zero as the

potential of the slack node, the solution of the equations then

yields the values of the dual node potentials.

J _ _ __ _ .
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Now given a basis, the primal solution (flows) and the dual

solution (potentials) can be calculated. Linear programming theory

provides the relations between primal and dual solutions that can

be checked to ascertain optimality. These are as follows:

I. For each basic arc (kfMB) we have:

(5) Primal feasibility: O<fk(ck

2. For each nonbasic arc (k 4 MB) we have:

Complementary slackness:

(6) a. (ih )/a< 2 implies fk=c

(7) c. (2ihk)/ak ?f implies f or

If given basic primal and dual solutions satisry both

primal feasibility and complementary slackness both solutions are

optimal for their respective problems, thus a test for optimality.

Figure 3-15a shows a flow solution for the example problem.

Figure 3-15b shows the associated basic network with node

potentials that satisfy equation (3). It is apparent that the flow

solution is basic and feasible. It only remains to check the

complementary slackness conditions. Checking these for each arc

reveals that the conditions are satisfied indicating that the flow

solution is optimal.

3.3.3 Primal Simplex Algorithm

Now that there is a procedure for 2hecking ovtimality, a

procedure is needed for directing and carrying out the search for

4;
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an oDtimum solution. This section describes a primal solution

procedure which is designed to start from a primal feasible basic

solution and move in a finite number of iterations to anoptimum

basic solution.

First the means to start the procedure when no initial

basic feasible solution is known must be provided. In general,

there is no guarantee that a particular problem has a feasible

solution. As frequently done in general linear programming an

artifical basis is used for the network problem. Here, for each

node, an additional arc is provided that connects the node to the

slack node. The added arcs are called artifical arcs. These arcs

are generated according to the following rules:

1. If bi>O, create an arc from i to n with capacity bi

2. If b.<O, create an arc from n to i with capacity -b.1 1

3. For each artifical arc:

a. Assign the arc cost of R where R is a large

positive number

b. Assign a gain of unity

c. Assign a flow equal to capacity

4. Augment the arc set by the artifical arcs.

For the artifical solution, all flows in the original network are

zero and all external flows are carried on artifical arcs to or

from the slack node. Conservation of flow is satisfied for all

nodes, and arc flows satisfy flow bounds. Thus, the given solution

is feasible for the network augmented by the artifical arcs. The

I. _ I I I I I I I . ..
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solution is very expensive, however, since all flows pass through

the artifical arcs with marginal cost R. The algorithm will

attempt to irive all flows off of the artifical arcs and on to the

arcs of the original network to reduce the cost. If the optimal

solution has nonzero flows on any of the artifical arcs it is clear

that there must not be a feasible solution to the original network

problem.

Wdith an initial basic solution defined for primal and -lual

problems, an algorithm that can check for optimality is required

and in the event of a nonoptimum solution, suggest a change that

will bring the solution closer to optimality. This algorithm is

the primal basic simothx algorithm which is comprised of the steps

which follow:

1. Check each nonbasic arc for complementary slackness,

if o +h )/a< I. then feco

if k4)/ak>/ then f~

If each nonbasic arc ioes not violate either of these conditions,

stop, the solution is optimal. Otherwise, choose an arc to enter

the basis that violates one of these conditions. Let this be arc

ku,

i. For each arc in the basis, find the amount of flow

change in the arc per unit of flow change in arc k,,h Use this

inforation to find the sxrimum flow change in arc k. that will

cause the flow in one of the bsic arcs to go to a bound or cause

ie...

if_, __ih__/_______then

7kc
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the flow in arc k, to go to its opposite bound. Choose the arc to

leave the basis kL as the arc which limits the flow change.

3. Change the flow in arc k. and the basis arcs by the

amount found in step 2. if kL km, return to step 1. Othervise,

change the basis tree by deleting arc kL and inserting arc k,.

This may require some redirection of arcs to obtain directed trees

and semi-trees. Change the node potentials to be consistent with

the new basis network. Return to step 1.

The details of the implementation of this algorithm are

fairly complex. Jensen and Barnes (1960) provide complete details.

Because of the special structure of the network problem this

specialized version of the simplex algorithm is much more efficient

than more general linear programming algorithms applied to the

network problem.

3.4 Xpplication to the Guadalupe River Basin

Specific application of this deterministic model was made

to the Gudalupe River Basin in Texas. The geographical layout of

the basin is as shown in Figure 3-16.

A proposed plan for the basin is to expand the existing

reservoir system to include three new reservoirs; Cloptin Crossing,

Cuero 1, and Cuero 1I. These new reservoirs along with the

existing reservoir, Canyon, are felt necessary for meeting water

supply demands for the future. Future demands are those projected

for the year 2020 and are primarily for the San Antonio area, most

t. - - - ____ ___ ___ ____ ___ __ _ ___ _ -
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of which will be irawn off through Victoria.

'4onthly historical rainfall and runoff iata were made

available by the Texas Department of Water Resources for the years

1925-1970. These data were adjusted to reflect runoff amounts into

these four reservoirs, given that they had existed during this 46

year period.

This four reservoir system is shown in network schematic

for in ?igure 3-17. In contrast to the earlier networks, only

single arcs are shown between the various nodes. This is for the

sake of clarity as multiple arcs were -sed for this example. This

network liffers slightly from the previous jodels in that iemands

are allowed at junction points, Seguin and Victoria, as well as

from some of the reservoirs. This was done to provide a more

realistic picture of the true problem being modeled. Also, the

arcs between Cuero I and Cuero 1I running in opposite directions

imply an exchange capabiltiy due to piping and pumping where

necessary. This interchange was originally planned to be an

equalization channel thus implying both rese-oirs would always be

at the same level. If modelled this way, these two reservoirs

could be treated as one.

Twelve copies of the single period model of F'igure 3-17

were interconnected to fora a multiperiod model with each period

equivalent to a sonth. The multiperiod model thus represents one

year of operation. The operation of a reservoir system over a

period of years naturally implies that water available at the end

i- ~ -- --
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of this 12 month network would be available for the 13th month and

so on. This is modeled by connecting the ending level reservoir

* nodes of period 12 with the beginning reservoir nodes of period 1,

* resulting in a closed or looped system of networks.

By summing the monthly inflow data and dividing by 46, the

average monthly inflows were derived. These were used as the

deterministic inflows to the system. Also specified were resertoir

,apacities, reservoir levels and demands. All data was converted

to 1000 acre feet equivalents. For this exercise, demands were

listributed evenly throughout the year. This most likely would not

be the true state of nature for most lemand points and could easily

be changed to reflect a more realistic demand profile.

The deterministic solution showed that under these

conditions, enough water was available on the average to meet all

lemands for all periods. Since there was no penalty assessed for

releasing water to San Antonio Bay, and no reward for building up

the levels of the reservoirs, the reservoirs tended to be held at

their minimum levels. Given no penalty or reward for doing

other-wise, this is what one would expect with known fixed inflows

and lemands. Specific node, arc and inflow parameters for this

twelve period model along with the network flow results are shown

Ln the Appendix as the Guadalupe River Basin, Deterministic Case.

A iatrix generator was developed to take the single period

information and convert it to a multiperiod data set. At this

Doint, the new data set coull be modified to reflect changing arc

.i1 v _ __ _ _ _
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parameter choices.

In the next chapter a new model is ieveloped which takes

into account the stochastic nature of r -noff and the interaction

between reservoirs. Then in Chapter 7 this new model -will be

applied to a hypothetical three reservoir system and finally to the

Guadalupe River Basis four reservoir system.

S?
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CHAPTER IV

4. Dynamic Programming Solution Approach

4.1 The Decision Process

This chapter will be used to develop and present the

dynamic programming solution approach to solve the multireservoir,

multiperiod stochastic problem.

Consideration of a multiperiod model implies that actions

taken in one period effect not only the current period but

following ones as well. Decisions in the current period must take

account of the impact that these decisions will have on the periods

to come. To utilize this concept, a benefit function will be

derived for each period in the time horizon which measures the

value of water to be stored in the system for future use. Once

these benefit functions are 'nown, the network can be optimized for

a given starting position with the objective of maximizing the

current and future benefits.

Realistically, the benefit function for any period t should

reflect the characteristic that as more and more water is made

0 available, there is a decreasing marginal return or benefit to

society. This implies that the benefit function must be concave.

The model to be developed requires that this be the case.

Additionally, for a multireservoir system, one would expect

71
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some interaction to occur between reservoirs, Darticularly those in

close proximity to each other. Thus, for systems of reservoirs, it

is implied that the future benefit of water stored in a single

reservoir should be a function of the amount of water stored in

neighboring reservoirs.

A dynamic programming approach is used to derive an

expected benefit function for water stored in each period of the

time horizon. These benefits are represented as a function of

reservoir contents. They are generally concave, nonlinear and may

include cross-product terms that represent the interaction between

reservoirs.

Because a functional approach is used instead of a discrete

table, as. is commonly done, the dimensionality problem usually

associated with dynamic programming is partially overcome.

A network flow programming algorithm is used to solve

subproblems generated by dynamic programming. Since the network

problems are partially composed of nonlinear objective functions,

it has been necessary to modify the network algorithms to handle

this case. Details of how this is done will be presented in

Chapter 5.

The first part of this chapter provides a review of

deterministic and stochastic dynamic programming. This is followed

by a brief iescription of the multireservoir network model to be

used in the dynamic programming approach to the multireservoir

multiperiod problem. ?inally, the overall algorithm for the
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dynamic programming derivation of the desired benefit functions is

presented.

4.2 Deterministic Dynamic Programming

Dynamic programming is a method of solving an intricate

problem by decomposing it into a series of stages (of time, space,

etc.) and approaching the solution stepwise. This method, also

known as Recursive Optimization, is based on Bellman's "principle

of optimality" (Bellman and Dreyfus (1962)) which states that an

optimal set of sequential decisions has the property that whatever

the first decision is, the remaining decisions must be optimal with

respect to the outcome of the first decision.

In contrast to linear programming, there does not exist a

standard mathematical formulation of "the" dynamic programming

problem. Rather, dynamic programming is a general type of approach

to problem solving, and the particular equations used must be

developed to fit each individual situation. Of importance to any

dynamic programming problem is the identification of the stages,

the state variables, the transition equations, the decision set and

the return function.

To illustrate the deterministic dynamic programming

approach consider a multiperiod single reservoir problem. Here,

the stages would represent the several time periods within the time

horizon. A finite time horizon of T periods is assumed. Each

stage would then represent a period of time for which a decision or

- -- - - --w"A - -
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set of decisions must be made.

The decisions to be made at each time period may be how

much water to give up in the form of supplying demands and

releases, or how much water to store in the reservoir for the next

and future time periods.

To make these decisions, one must know the level of water

stored in the reservoir at the beginning of the time period. The

level of water in the reservoir is then the state variable. The

ending level of water in a reservoir will be equal to its initial

level plus inflows minus outflows. Let St equal the value of the

state variable at stage t, i.e. the reservoir level at the end of

period t. The value of the state variable at stage t is defined as

a function of the value at stage t-1:

St a St- 1 + i -dt

where:

$t-I is the level at the beginning of period t

S is the level at the end of period t
t

i is the inflow in period t (assumed known for the
S t

deterministic problem)

*1 is the decision on outflows for period t

t

.This is called the transition equation and it is defined

for all t from 1 through T. rts purpose is to uniquely define the

value of the state variable at the input to the next stage. Assume

for now that the above defined terms can only take on the integer

values 1,2, ...,9, and that any combination of them that forces S to

1 , -
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be less than 1 will take on the value of I or greater than 9, the

value 9. These are referred to as boundary conditions. Hence, for

each stage, the state variable (water level) can take on any of 9

values.

Having defined the stages and state variables consider now

the possible decisions. Let the decision to be made at each stage

equal the total outflow. Remember this may represent both water

supplied to users and water released downstream. The decision can

range from min(St t-9) to (St_ +it-1) since only available water

can be released and there must be at least one init left. For each

level of 3, there are at most 9 possible transitions that can be

made depending on the value of i and on the decision d. Thus,

between any two consecutive stages there are at most 91 possible

paths to take.

Next, the return function must be defined. This represents

the immediate cost of making a given decision starting from a given

state. The immediate cost of making decision dt while in state

_ is expressed as C(St_1,dt). Based on Bellman's principle of

optimality, the total cost function is the sum of the immediate

cost plus the cost associated with making optimal decisions from

the new state to the end of the time horizon. This is expressed

as:

(st. ,d t) f(s+ )

where f(3 t  is the cost of the optimum policy for periods t I

through T. Taking the minimum of this over the possible decisions

LI
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yields the desired recursive relationship:

f(St_ 1 )=Min(C(3, _1,dt) f(S t)) for t-1 .... T
dt

The state variable S9 represents the reservoir level at the

end of period 1, S2 at the end of period 2, S3 at the end of period

3, and so on. The state variable ST is the reservoir level at the

end of the time horizon. The quantity 3O is the initial reservoir

level (at time 0).

if a value of f(ST) for every possible state ST is assumed,

the recursive equation for t=T can be solved. Note that solving

this equation for the example requires a minimization over as many

as nine decisions for each state ST-. There are nine different

values of f(sTI), one for each possible value of the state

variable ST I.

With f(ST_) known, the recursive equation can be solved

for t-T-1. The procedure continues until the recursive equation is

solved for t-1. At this point, the solution is complete except for

the recovery of the optimum solution.

The process of recovering the optimum is called the

traceback procedure. Let i t*( t_1) be the optimum decision found

for state S,_1 by solving the recursive equation. Given an initial

value of reservoir contents So, the optimum decision for period I

is d1*S 0 ). The transitior equation can be used to find the

optimum value of t

=O-dl
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7he value of S, letermines the optimum decision d,*(S ) which in

turn indicates the value of S2. This traceback procedure

ultimately leads to the complete optimum solution for the

ieterministic problem.

4.3 Stochastic Dynamic Programming

The above example is illustrative of a deterministic

problem in that the state at the next stage is determined by the

inflows during the period which are assumed known. In a realistic

situation, the inflows are, of course, not known with certainty

because they depend on the variability of nature. With stochastic

dynamic programming, it is not necessary to assume a deterministic

transition. Rather, a probability distribution on the transition

is defined. Thus, let p(S dtV,S ) be the probability of

transition to state 3, given that decision d is made starting in
I t

state 5t-," Because some transition must-be made, it is required

that:

all S "

Define C(3t_,dt,St) to be the cost of starting in state S

making decision dt and ending in state S ., Now the stochastic

dynamic programming recursive equation can be written. Let f(St)

be the expected value of starting at state St (at the end of period

t), traversing to the time horizon, and always making the decison

which minimizes the expected cost. Then:

7



- |

78

f(St_ )-Kin P( S I t st I )(C(S t I ,d t 3t -f (g
dt all St

for t1,2, ... ,T

This recursive equation is again solved backwards by first assuming

-a value for f(ST) and then solving for f(ST_1). This allows the

solution for f(ST-2 ) to be obtained. The process continues until

the value of f(s) is determined. As this equation is solved for

each discrete value of St-1, an optimum Jecision is found

d *(S_). This is the decision that minimizes the expected costt -

from period t to the time horizon given that the system is in state

S at time t-1.

Although the optimum decisions are known for every state

value, the optimum set of decisions for the entire time horizon

cannot be determined. The traceback operation previously defined

for deterministic problems is not applicable for the stochastic

case. The traceback is not applicable since the transition is not

certain at any stage, rather, it is governed by a probability

distribution. Although an optimum decision is determined for each

state, only the first decision is determined since only S0 is

known. Stochastic dynamic programming models a realistic decision

process in which decisions are only made for the current period on

the basis of the current state value.

It should be stressed that stochastic dynamic programming

uses the criterion of 9xnected value of costs. There are other

criteria which might be more appropriate such as stochastic
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dominance (Barnes et al. (1979)). it is not clear however how

these coull be incorporated into an optimization algorithm such as

iynamic programming. All the literature surveyed by the author

involving stochastic iynamic programming utilized the expected

value criterion, so this criterion will be used in this report.

This standard approach to dynamic programming has a major

irawback: the "curse of limensionality". As the number of state

variables increases, the size of the problem in terms of both

computer storage and computation time becomes prohibitive. in the

example above, there was only one state variable with nine possible

iecisions at each stage. If another state variable were added

(e.g. the level of a second reservoir), there would now be 31

unique states for each stage. The number of possible states at

each stage is equal to the number of levels raised to the (number

of reservoirs) power. In a five reservoir problem there would be

59,049 states. Problems in water resources frequently involve

systems of four or more reservoirs.

rn the sections to follow, a technique is developed which

replaces the discrete vector f(St) by a single mathematical

function (a benefit function) for each period, and adopts a method

of sampling from the distribution of inflows. Both of these

approaches greatly contribute to a reduction in the computational

requirements of iynamic programming and thus allow somewhat larger

systems to be solved.

• • • w
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4.4 Network Model for Multireservoir Multineriod Problem

For illustrative purposes and for reference throughout this

report consider a three reservoir network as shown in Figure A-1

d
This m.odel is very similar to the two reservoir model ot Figure

3-10 with one exception. 4ere, three new arcs (1,2,3) and three

new nodes p4,9,12) have been added. These new arcs will be used to

represent the f ure value of water to the system. Their cost

.unctions will include the nonlinear portion of the objective

function and in most cases they will be nonseparable. It is the

combined cost function of these three nonlinear arcs that

represents the future value of water to the system since the flow

in these arcs represents water stored for future use. The cost

functions for these arcs will also include linear terms.

Because of the iynamic programming approach to be used, it

is not necessary to connect the ending reservoir levels to the

I beginning reservoir levels of the next period as was done in the

deterministic multiperiod case. Thus, all nonlinear arcs

representing final storage could be terminated at a single node.

For modeling and visual convenience, three nodes will be used

, rather than a single node.

The network model of Figure 4-1 is all that is required for

the multiperiod model. This greatly simplifies the data input

requirements. Because of the dynamic programming approach this

3eemingly simple single period model provides all the required

4
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information for multiperiod use. This will become more obvious in

the next few sections.

Naturally, as the model represents different periods, any

or all of the network parameters can change to reflect :hanging

water availability and requirements over time. As will be seen,

even if it is not desired to change the network parameters in the

linear Dart of the network, the cost parameters of the nonlinear

arcs will necessarily change from period to period due to the

changing inflow parameters causing flow changes in these arcs. A

change of flow in any of the nonlinear arcs can cause a change in

the cost assigned to other nonlinear arcs if the cross product

terms are nonzero.

I
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4.5 The Dynamic Programming Algorithm for Deriving the Benefit

* Functions for the Multiperiod Multireservoir Problem

Figure 4-2 represents the multiperiod model for the

stochastic problem. Each box is a single period model of the type

shown in Figure 4-1. The notation in this figure is as follows:

T a number of periods of the analysis or time horizon

R = number of reservoirs, ri1,...,R

i t = (iti 2t,. irt) This is a vector of runoff

inflows to the reservoirs during period t. Assume that

It  is a random vector from a known distribution. The

parameters of the distribution or the distribution

itself may differ from period to period. The inflows

for two different periods are assumed to be independent

random variables. It is assumed that these are the

only external flows into the system except the initial

reservoir contents of period 1.

St= (s1t's2t .rt. This is a vector of reservoir

contents at the end of period t. Note that it also

describes the initial reservoir contents of period t+1.

I

0t (o1t,o2t,...,Ort). This is a vector of outflows

during period t.

Ft  (fitf f ... ,ft). This is a vector of arc flows in

the single period network for time t. The vectors 3 .

tq

a

c,-:i. , ~ * 0 ~ I
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and 0t are also included as flows on arcs.
tI

- The inflows to the network in period t are:

•st_1 *+rt

They are represented as positive external flows at the reservoir

nodes. The outflows of the system are flows to the demand nodes

and the end of the period reservoir contents nodes. For the single

period model of Figure 4-1 it is assumed that inflows will be known

before the flow decisions are made. In reality, flows are

continually adjusted throughout a period as the inflows are

revealed by the passage of time. For this discrete model the

length of the time period may be adjusted to allow any desired

legree of accuracy however the distribution of flows within a time

period are assumed to be instantaneous.

The multiperiod model is solved with stochastic dynamic

programming. The flow chart of Figure 4-3 represents the overall

dynamic programming process used for deriving the benefit functions

for all t. The periods referred to in this flow chart represent

the T periods of Figure 4-2.

Before describing the algorithm in ietail some additional

notation is necessary.

Let:

M a lumber of discretizations of reservoir contents

7K - 'apacity of reservoir r

RL Vector of reservoir levels for liscretization as a

- .~-. -.--- -, -



86

Read data for 1Read 13

period T Runoff
Network, Reservoir Parameters
Runoff Parameters for period t
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percent of CK There will be NN components of RL.

ZZ - Value of the random number

• * - lumber of level combinations given R reservoirs.

* Thus,

LR
, LR a 'IN

K * Number of random observations per level combination

of the vector It taken from the distribution of It

BF(St) = Expected benefit for water stored at the end of

period t for t = 1,...,T

Y(St_1 , I) = Model response for level combination t when

the random inflow is I

Using the above notation some sample values will be assumed for

purposes of illustrating the overall process. For this example,

let:

R - 2 reservoirs

YN 3

CKI 20, CK2 a 40

RL- (.5, .7, .9)

K 10

B?(St) - 20fi 25f 2  "2 "'45f*f2
t 2 "1 ^2

Then:

LR * 32 . 9 level combinations

These 9 level combinations will be represented by the rector 9,-

(s t The possibilities are listed in Table 4-1. *
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Table 4-1

Level Combinations for the Example

sit '2t
102

10 20

10 36

14 20

14 29

14 36

is 20

is 29

Is 36

This example will be continued later.

The steps of the algorithm corresponding to the boxes of

the flow chart in Figure 4-3 are as follows:

1.Read the network and reservoir data. This includes reading

all of the network arc parameters and all reservoir data

(NN, Cr' W, RL, T, etc.). Also read the runoff parameters

fo r period T for each reservoir. These define the

distribution of random inflows I. Set t aT.

2. Read BF(ST): This is the assumed functional representation

for the future value of water at the end of period T. This

information relates to the cost parameters to be assigned to

the nonlinear arcs for period T. For the two reservoir

example, read two linear coefficients two coefficients for

=MON
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the squared terms and one coefficient for the cross product.

3. Draw a random observation from the distribution it,

4. Select a level combination. From the LR combinations,

select one that has not been evaluated. This level

combination is the vector St-; since it represents a given

initial set of reservoir contents for period t. Go to 5.

5. Solve the network. Since BF(S t), St-, and It are known, the

single period network problem is deterministic.

Let the optimal solution to the network be given as:

Y(St1 ,It) - in(HFt - BF(St))

subject to conservation of flow and bounding constraints.

This is not a linear problem since BF(S t) is nonlinear and

St contains variables of the flow problem. The problem is a

nonlinear network flow problem. The solution procedure for

this nonlinear network will be discussed in Chapter 5. To

further simplify the notation, let:

Yi~ Y(St-JI ) w = I...,.K

This is equivalent to stating that there are now i different

level combinations and for each of these level combinations

K random draws will be made. Thus, Yi,w represents the

value of the network optimal solution for the ith level and

the wth draw. Go to 6

5. If all level combinations have not been evaluated, go to 4.

Otherwise, LR values of i,w will have been generated for

~. ,w
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this choice of w, one for each level combination. For each

of these level combinations the same random inflows, It'

will have been added. Go to 7.

7. If all random draws hare not been made, go to 3. Otherwise,

for each random draw all level combinations will have been

evaluated. A total of LR times K (90 for this example)

optimal solutions will have been generated. Tach random

inflow It was applied to all L. combinations. This aspect

of the algorithm is discussed more fully in section 4.6. Go

to 9.

3. Average the values obtained from the observations for each

level combination. Go to 9.

9. Least squares regression. Perform a least squares

regression using the averages of the observations as the

dependent variable. This will be discussed more fully in

section 4.7. Go to 10.

10. Move back one time period: Let t = t-1. Go to 11.

11. If t a zero, STOP. Otherwise, go to 11.

12. Adjust network parameters. This requires adjusting the cost

parameters for the nonlinear arcs. These new parameters

will be the coefficents of the derived benefit function. Go

to 12.

13. Read runoff parameters for period t-1. Go to 3.

Once BF(ST-1) is available, then BF(S_ 2,,) is computed in a
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like manner. The process continues until BF(S1 ) is evaluated.

This approach is different than the classical dynamic programming

aproach in the following ways:

99

1. The benefit function is represented as a continuous

mathematical function rather than for discrete values of the

state variables.

2. The recursive equation is solved using a Monte Carlo

sampling approach rather than using transition

probabilities.

3. The optimum decisions are found using a network flow

algorithm rather than a discrete search over a finite set of

decisions.

The solution procedure of the network optimization

algorithm requires that the form of the benefit function be

specified. This is necessary since a different solution technique

would be required for solving the nonlinear form of the benefit

function. While any convex form could be applied, the next section

discusses the rational for using a quadratic to represent these

benefit functions.

9I

4.6 Sampling From the Distribution of inflows

An important aspect of the algorithm is the derivation of

the expected benefit by sampling from the distribution of inflows.

The runoff distributions provided as an input to the procedure may

take many forms. These may include normal, log-normal, log-normal

Vr
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Pearson Type IT:, exponential, historical, etc. The computer

program currently has three options available, normal, log-normal

and historical. Other inflow distributions could easily be

incorporated.

As an example of how these inflow parameters are used,

consider again the example problem used earlier. If the

distribution of runoff is assumed to be normal, the mean and

standard deviation for inflows will be read for each reservoir in

box I of Figure 4-3. Let the mean and standard deviation for the

two reservoirs be as follows:

Reservoir 1 lean = 5, Standard Deviation = 2

Reservoir 2 lean = 9, Standard Deviation = 3

Next, in box 3, a random number ZZ will be generated from a normal

distribution with a mean of zero and a standard deviation of 1. ZZ

is used in conjunction with the mean and standard deviation for

each reservoir. Thus, the total inflow for each reservoir will be

equal to:

it = lean + ZZ * Std. Dev.

if it is less than or equal to zero, a zero inflow is assumed. For

example, if ZZ = .5, ilt - 5 + I , and i2 t = 3 + 1.5 - 9.5.

This implies that for the model developed, perfect

correlation of inflows between the reservoirs in a basin is

assumed. T"his is not a requirement of the algorithm and other

assumptions could be made.

:n addition to applying the random number ZZ to all
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reservoirs, this same random inflow will be applied to all
*|

reservoirs for all level iombinations. For each of the 9 level

combinations of the example, add 6 and 9.5 units to the initial

contents for reservoirs I and 2 respectively. This will result in

total water available for level combination I of 16 for reservoir 1

and 29.5 for reservoir 2. For the second level combination, these

values would be 16 and 37.5, etc. This process is used to assure

convexity of the response surface. This assures that if the first

level combination is overestimated, all of the remaining level

combinations will also be overestimated. To minimize this over (or

under) estimation it is required that a sufficient number of random

Iraws be made to make this error negligible. This will be

discussed more fully in Chapter 6.

4.' Least Squares Regression

As indicated by the algorithm a least squares regression is

perfo-med on the mean responses of the LR level combinatons. 7f

all level combinations have been evaluated, there will exist a

matrix of optimum solution values referred to here as the response

matrix as illustrated in Figure 4-4. The rows of the response

matrix represent the LR level combinations and the K columns

reDresent the network optimal solutions, Yi,., for each of the K

draws. Preceding this response matrix is another matrix which will

be referred to as the design matrix. This matrix will have LR rows

and U columns, where U depends upon the number of terms in the
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benefit function BF(S_) If it is desired to fit a linear

benefit function to this data in terms of the R reservoirs, U - R +

1, (R linear terms plus a constant). To represent the benefit

function as a quadratic, linear, second order and interactive terms

* are required. Thus, for the quadratic, U 2 * R + C 1 1. Thus,

the U terms in each row represent the desired form of the benefitV function. For the example, U - 6.

To fit the desired form of the benefit function to this

lata, a least squares regression is performed. Here, the design

matrix has as its first column, a vector of ones. This is

necessary to account for the constant term. Accordingly, this

design matrix represents the independent variables for he

regression analysis. As the dependent variable, the means of the

rows of the response matrix will be used. Thus, the dependent

variable for row i is:

K

Yi 'w for all i

By fitting this data to the selected design, BP(StI) is derived.

4.8 The uadratiz Benefit Function

.he usual procedure of discrete dynamic programming is to

store the return function f($t) in computer memory for a large

number of discrete values of the state variables S t . When S, is a

t*i
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multidimensional vector (one dimension for each resetroir) the

number of possible discrete states can be very large. Because

rapid access computer memory is finite in size, this limits the

number of state variables that can be handled at each stage.

Three state variables is frequently described as a practical

limit.

In the method presented here, this storage problem is

overcome by fitting a quadratic function to BF(3 ) and storing only

the coefficients of the quadratic.

k quadratic form has been chosen for the following reasons:

1. It can exhibit the concave shape expected for the

benefit function. (convex cost function)

2. It can represent nonseparable interactions between

reservoirs with cross product terms.

3. It is easy to store in a computer.

4. It is computationally convenient in the network models

which arise in the solution procedure.

If St has n dimensions, the number of terms in a quadratic

is:

?or the three reservoir case the full three variable quadratic

would have 10 terms as shown here:

B.11 2 3341 52 2Bo B~f1 +B2 f 2 .B3 f3 4B~fI2 4 Bsf 2 2 B6 f 3 *B7 flf 2 +B~flf 3 *BOf 2 f

V. __ _ _ _ _ _
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Storing these 10 coefficients is much easier than storing the INR

Aiscrete state vectors.

* Also beneficial is the fact that the function is defined

for continuous St rather than discrete values. This means that

once such a function has been derived (albeit from an approximation

to the discrete representation) decisions can be made by a one time

solution of the network using the observed reservoir levels. These

reservoir levels need not be equated or rounded to the nearest

liscrete level.

Tt is clear that the true expected benefit function is not

in reality a quadratic function. A better fit to the observed data

might be obtained with a more complex model. This research has

limited consideration to the quadratic because of the reasons noted

above. The dynamic programming methodology however is not limited

to this case. Indeed the data could be fit to any model and the

recursive procedure is independent of the model. The network flow

solution procedure is limited to the quadratic case, however it

probably would be possible to derive a more general procedure along

the lines of nonlinear algorithms for pure network flow problems

(Luenberger (1965)). This was outside the scope of this research.

* The next chapter will present the methodology for solution

of the nonlinear (quadratic) network. The method for obtaining

data for use in the least squares program will be fully explained

in Chapter 6.
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Chapter V

5. Solution of Nonlnear Network Problems

5.1 Introduction

In the performance of the dynamic programming algorithm it

is necessary to solve network problems with convex, quadratic,

nonseparable arc costs. In Figure 4-I the flow on arcs 1, 2 and 3

represent water stored in reservoirs for future use. The benefit

function for this water stored is represented as a concave,

quadratic function. As an example of a quadratic concave benefit

function, BF(fl, f2,f3 ) is assumed to be:

2_ 2_ 2_59f 1 46f 2 39f 3-.86f1 - .53f 2 -.52f 3 -.64f1 f2-. 40f1 f3 -.68f 2f3

where f1, f2 and f3 are the flows on arcs 1, 2 and 3 respectively.

This benefit function will be used later as the period T assumed

benefit function for many of the example problems of Chapter 7.

Since the algorithm operates on costs the negative of the benefit

function is used to obtain the cost function. Thus:

C(ff 2 ,f ) -BF(f f2, f)

This is a convex cost function. The network flow programming

algorithms which have appeared in the literature (Ali et al.

(1978), Cooper and Kennington (1977), Dembo and Klincewicz (1979),

9
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Florian (1977), Frank and Wolfe (1956), Relgason and Kennington

(1979) and Klincewicz (1979) have been designed for linear or

convex problems, but not for generalized problems with nonseparable

objective functions. This chapter provides details on the

theoretical development of an algorithm to handle quadratic

nonseparable objective functions. The procedure is designed for

generalized networks (i.e. networks with gains) with convex,

quadratic, nonseparable objective functions and has been coded in

Fortran for the CDC computer.

5.2 Problem Statement

Consider a network problem defined as in Chapter III with

the added stipulaticn that a subset of the arcs, M, have nonlinear

arc costs. This subset is included in the set of all arcs M. The

linear cost coefficients are described by the vector H for all

arcs. A matrix will be used to define the nonlinear component of

cost.

The cost of nonlinear arcs is assumed to be a quadratic

function of arc flows. Let FN be the vector of flows in the

nonlinear arcs and ZN  be the nonlinear cost contribution of the

nonlinear arcs. Then:

FTZ N Q FN

where Q is a symmetric matrix which is positive definite and the T

represents the transpose of a vector.

wl- jaw
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hhFor the example problem:

.86 *32 .2

4P = .31 .53 34

SL 0 .34 5

This is a. positive definite matrix, so Z is a convex function.

This Q matrix is equivalent to the Hessian of C(f1 ,f2 ,f3 ) divided

by 2. This notation is common in the literature and Q is referred

to as the quadratic matrix.

The total cost for the system flow is:

Z=RF FN Q FN

The nonlinear arcs are also represented in the flow vector

F so that linear costs can also be associated with the arcs.

Define H' to be the vector of first derivatives of the arc

costs. Of course, for the linear arcs:

Eq. (1):

h' koh

For nonlinear arcs:

Eq. (2):

h khk+2Qhk= 'kFN

w where Qk is the kth row of Q. In this chapter, Q will be

subscripted with k to indicate a specific row in the Q matrix.

When Q is not subscripted, it will refer to the entire matrix. In

Chapter 6, the matrix Q will be subscripted as Qt when it is

desired to identify it with a specific time period.

- . ... . . ' -p. .-- -. .. ,.- . .. . . iq i
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The algorithm has to find a minimum cost solution for the

flow vector F (which includes the nonlinear flows FN). The

nonlinear network model is:

Model III
T

Minimize F + F N Q FN

St.

k .,f i,....
kCX Oi k ' Ti

2< f< c
k k

These are the same network constraints as for the linear model. A

primal approach is used in which an initial basic feasible solution

is defined. This solution describes a basis network. A basis

network for the pure network is a set of n-1 arcs which form a tree

rooted at the slack node and having a directed path from the slack

node to all the nodes of the network. For the generalized

network, the basis network may consist of several components, one

of which is a tree rooted at the slack node and the other are trees

rooted at cycles. A component consists of a set of nodes such that

there is a path between every pair of nodes in the set.

The solution procedure for the nonlinear network parallels

that of the primal linear solution algorithm of Chapter 3.3. This

algorithm is restated here.

1. Check each nonbasic arc for complementary slackness,

if ( +'. h')/a < Y. then f
i. k k YJ 'k k

• = O

.. ..L!I . . . . . - 2
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if (7i + h)/a > then f 0
/a. >c kk j

If each nonbasic arc does not violate either of these conditions,

* stop, the solution is optimal. Otherwise, choose an arc to enter
6"

* the basis that violates one of these conditions. Let this be arc

k-.. Note that h2' is used in these conditions for the nonlinear

problem.

2. For each arc in the basis, find the amount of flow

change in the arc per unit of flow change in arc kI,. Use this

information to find the maximum flow change in arc k. that will

cause the flow in one of the basic arcs to go to a bound or cause

the flow in arc k, to go to its opposite bound. Choose the arc to

leave the basis, kL, as the are which limits the flow.

3. Change the flow in arc k. and the basis arcs by the

amount found in step 2. If kL kc, return to step I. Otherwise,

change the basis tree by deleting arc kL and inserting arc k.

Change the node potentials to be consistent with the new basis

network. Return to step 1.

For a linear problem the iterative step of the primal

method checks all nonbasic arcs for optimality. This is the test

for complementary slackness (Chapter III) which evaluates:

k ~~ k t J

where the subscript E refers to the entering arc. If d is less

than zero and f is zero, then the network is not optimal and arc
kE

k-. will attempt to enter the basis. d is interpreted as the
k E

I m I I I I I
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change in the objective function per unit change of flow in arc E.

Since d is negative, and the model is trying to minimize costs,

o it would like to put as much flow on this arc as possible. For

* each unit of flow added to arc k., the objective function will

change by d . In this case the objective function will be reduced

since dk < 0. The other nonoptimal condition is where d > 0 and

f = c In this case the algorithm will remove flow from arc
kE  k

'. E and for each unit removed, the objective function will be

decreased by the amount i . Because of the conservation of flow
kE'

conditions, changing flow on arc k. means adjusting the flows on

other basic arcs. The final result is that eventually one of these

arcs, either k., or a basic arc, will reach its bound on flow and no

further improvement can be made. If there is enough slack in the

network to allow arc k, to receive as much flow as it can handle

(i.e. f goes to one of its bounds) then arc k is not allowed to

enter the basis rather it becomes nonbasic at the opposite bound.

However, if there is a basic arc whose flow goes to one of its

bounds before the flow on the entering arc reaches a bound this

basic arc will leave the basis and arc kI, will enter.

There are two principle differences between the nonlinear

* and linear networks which require special consideration in the

algorithm. The first is that as flow changes on the nonlinear

arcs, their marginal costs, h$, will also change. These costs are

a linear function of the flows and are not constants. Thus a flow

change on the basic arcs and arc k., may simultaneously change the

. im j , . .. .... " i -¥ . " ' -m .... .. . :, 2 r-' -¥. ". .. . " ' I

-~ -,,-
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dual variable, , and the value of h' This results in the
kv

second difference. A flow smaller than the one required to cause

either I or a basic arc to reach a bound may cause the entering

arc to satisfy complementary slackness. Thus, it may be that a

nonlinear arc will remain nonbasic, even though the flow on the

nonbasic arc is between its bounds. For the linear problem each

nonbasic arc will have flow at zero or capacity, while for the

nonlinear problem a nonbasic flow may be between zero and capacity.

These differences will be illustrated below by first demonstrating

the algorithm with a linear network and then showing the

differences with a nonlinear network.

Assume that in step 1 of the primal simplex algorithm, a

nonbasic arc is discovered which violates complementary slackness.

For this discussion, let Ik < 0. In the linear network this would

imply that f 0. The networks of Figure 5-1 illustrate the

steps of the primal simplex algorithm for a pure linear network

(a i). The basis for Figure 5-la is made up of arcs (2,3,4).

The node potentials are determined by the basic arcs. Thus, 3 =

+ h 0 + 2 a 2. 71 " 7 h - 2 + 3 - 5 and 7 - - h - 5
1 22 3 3 4 2 3

I - 6. Step 1 of the algorithm checks each nonbasic arc for

complementary slackness. The nonbasic arcs are arcs 1 and 5. For

arc I d, . 7/I + h1 - -3 and d a ? * h - - - Both1 2 5 3 5 4

arcs 1 and 5 have dk < 0. Arc 5, however, is at capacity (f 5  a c5 )

which means that complementary slackness is satisfied. Arc I has

zero flow and a negative di implies a nonoptimal condition. Arc I

-~ _ _ _ _ - _ _ _ _ _ - --- -,- --- - -

- I - - -I
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is identified as the entering arc, kE.

Step 2 of the algorithm finds the arc wdhich will limit the

* flow change as flow is changed on arc km,. As flow is added to arc

* I1, flow must be lecreased on basic arcs 2 and 3 to maintain

conservation of flow. A decrease of 1 unit on arc 3 results in a

flow of zero on this arc. This is the limiting arc and kLa3

Step 3 of the algorithm changes the flows according to the step 2

results and updates the node potentials. Figure 5-lb shows the

results of this iteration of the algorithm. The basic arcs are now

(1,2,4). The total cost for the network flows went from 16 to 13

for this iteration. i kis the change in total cost for a unit

change of flow in arc k,. Ik was -3 and one unit of flow was

added to arc a~ 1. The total cost changed by 16 -3 -13. The

algorithm now returns to step 1 to check for optimality.

The basis for Figure 5-lb includes arcs (1,2,4).

Evaluating the nonbasic arcs (3,5) results in d 3 2 + 3 - 2 -3

and d 2 * 3 - 3 = 2. Arc 3 has zero flow and complementary
5

slackness is satisfied. Arc 5 has f =c 5 and d > 0. This fails
5-5 5

the test for complementary slackness and k.a 5. In this case,

flow will be removed from arc 5 and are 2 and added to arcs 1 and

*4. As flow is removed, the flow on arcs 2 and 5 both reduce to

zero before the flow on are 1 or 4 reach their upper bound. In

this case, arc 5 is considered the limiting arc and k. kia 5.

.he resulting flows and 7)updates are shown in Figure 5-1c.

,he basis for Figure 5-ic remains the same -as Figure 5-1b
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(1,2,4), with a total cost of 9. For kE = 5, d 2 which impliesk 5'
that for each unit change of flow on arc 5, the total cost will

* decrease by 2. For a change of 2 units, total cost becomes 13 -

2(2) = 9. Returning to step 1 of the algorithm reveals that the

flows on the network of Figure 5-ic are optimal.

Figures 5-2 and 5-3 are intended to show the differences

between linear and nonlinear networks with respect to the steps of

the algorithm. The network of Figure 5-2 has the same form as

Figure 5-1 but different arc parameters. Arc I is now a nonlinear

2. "arc with an arc cost function of h, = f1  arc is presently

nonbasic with zero flow as shown in Figure 5-2a. The basis

includes arcs (2,3,4). Step I of the algorithm evaluates the

nonbasic arcs for complementary slackness. 1. = 3 + 10 - S = 5 and

complementary slackness is satisfied. Arc I however, has d, a 0 +

2f - 6 = -6 since f, . 0. Thus, k' = 1. Step 2 of the algorithm

finds the arc which limits the flow change. As flow is increased

on arc I flow must be decreased on arcs 2 and 3. If the network of

Figure 5-2 were linear, it would be profitable to add 4 units of

flow to arc I and remove 4 units from arcs 2 and 3, causing all

three of these arcs to go to a bound, in which case any one of

these arcs could leave the basis. For d1 a -6, this would reduce

the total cost to 9 since h, 0 I. The marginal cost for arc I will

not remain zero as flow is added for the nonlinear case.

%onsequently, it is necessary to find the amount of flow which when

added to arc I will cause I to go to zero. In this case, for f, =

-v __ _____
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3, h; 6 and d1  0 6 - 6 0. Thus, the flow change is limited

to 3 on the nonlinear arc. Comparing this limiting flow with the

limiting flow for the linear arcs of 4 and choosing the smallest

results in arc 1 being the limiting arc.

Figure 5-2b shows the results of this flow change and the

updated node potentials. Several things should be noted in Figure

5-2b. First, as in the linear network, if k E is the limiting arc,

Lk c. Thus, the basis of Figure 5-2b is the same as Figure

5-2a. However, flow on arc I (a nonbasic nonlinear arc) is not at

a bound. This is allowed for nonlinear networks but not for

linear networks.

Secondly, when evaluating the d for the nonbasic arcs ofk

Figure 5-2b, di . 3. This is due to the previous iteration which

forced this result. Evaluating arc 5, yields 1.. 5 and the

network of Figure 5-2b is optimal. The total cost is now 23.

A third feature to note is that the total cost did not

reduce to 9 as it would have if this were a linear network. Thus,

for the nonlinear network, the evaluation of d k is necessary to

test for complementary slackness, but it cannot be interpreted as

* the change in total cost per unit change of flow in arc k., for

nonlinear networks, rather it is the derivative of this change.

In the example above, the node potentials did not change

since the basis remained unchanged and contained only linear arcs.

If the nonlinear arc had entered the basis and since there are no

other nonlinear arcs in "he basis, the node potentials would be



110

updated in the usual manner, that being only to update the node

potentials in the subtree rooted at the terminal node of the

entering arc. For a more complicated network there may be other

nonlinear arcs in the basis. These arcs may or may not be in the

* subtree rooted at the terminal node of the entering arc. If' they

are, the node potentials will be updated routinely. Basic

nonlinear arcs in another part of the network may not experience a

flow change, however, if their costs functions include an

interactive term relating to an arc whose flow did change, then the

marginal cost associated with the nonlinear arc will change. This

requires that the node potentials be updated for all nodes in all

subtrees rooted at the origin of the nonlinear arcs in the basis.

Consider the simple example of Figure 5-3. There are two

nonlinear arcs in this network, arcs 1 and 2. Let the cost

associated with arc 1 be h (f ) f + 5f f and further suppose1 N 1 2

that the flow on arc 2 is zero. Consequently, the node potentials

for nodes a,b, and c are (1,11,16) respectively. Let kc.3 . 2 enter

the basis with a flow of 2 and suppose k.L = arc 3. 'The node

potentials for nodes d,e and f would be updated in the usual way

since they are in the subtree rooted at the terminal node of the

entering arc. For the linear problem, these are the only node

potentials that would require updating. in the nonlinear case,

since the cost of arc 1 is a function of the flow on both arcs

and 2, the marginal cost for arc 1 will change.

h; a - + 5
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-5(2) *2

Thus, the marginal cost now associated with arc 1 is 2 instead of

1. Accordingly, the node potentials for nodes a.b and c will

require updating to values of (2,12,17) respectively. This is

unique to the nonlinear network and must be accounted for in the

algorithms. The node potentials for nodes h and i will remain

unchanged if arcs 4 and 5 have linear arc cost functions.

The main changes to the linear network codes to allow use

of the primal simplex algorithm for the nonlinear problem involve

three primary areas:

Thes Deerinn the arc costs and node potentials

2. Clcultingthe effect of flow change

3. Fndin thevalue of flow change which causes I to go

to erofora nonlinear arc k..
Thee treeisseswill be addressed in the remaining three

sectonsof hischapter.
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5.3 Arc Cost and Node Potential

The dual variable 'Y, represents the marginal cost of

increasing flow to node i. For the pure linear problem:

. Tq. (3):

-th' k(i~)
.j i kB

Setting the node potential for the slack node equal to zero allows

the determination of the node Dotential for all other nodes in the

network. For the generalized linear problem:

q. (4):

* k(i.j) x.
ak

For the linear problem the marginal cost of flow through an

arc is constant. For the nonlinear network, the marginal cost is

not constant but is a function of flow. The marginal cost hk is

the partial derivative of the arc cost function with respect to fk

if nodes i and j happen to be on a cycle a more complex equation is

required for calculating the node potentials. Let M,

1,2... ,k) represent the nodes of a cycle. The 7I value at node

1 is:

q. (5):k-I

" h + > hk  a.

k-2 j -i

B-i

where B is the cycle gain, defined as the product of the arc gains

on the cycle.

| . |ll II A

- -V
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B

The numerator of equation 5 is referred to as the unit cost of the

cycle. Ince one of the node potentials for a node on the cycle is

determined, the remaining can be calculated using equation 4.

From equation 2 the marginal cost for linear arcs is just

hk and for the nonlinear arcs in a quadratic model is:

Eq. (6):

hK~hk 2Qk7N

Thus, for the nonlinear problem:

Eq. (7):

_ for (k(ij) M MN C M3
ak

5.4 The Effect of Flow Changes

When an arc is to enter the basis, flow is changed in the

basic arcs. To determine what these flow changes are, a quantity

is computed. represents the flow change through node j, for a

" unit flow change in the entering arc.

The equations which are presented here without

justification are described in detail in Jensen and Barnes (1980).

It is important to present them in this form because in a nonlinear

problem the flow in basic arcs effects the node potentials and

hence the value of i, k As stated above, it is possible that a

flow change will Irive d. to zero before an arc is Iriven out of

the basis and before the flow on arc k3 reaches its bound.

4 ___________________________________.
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Assume that an arc k (iEjE) is chosen to enter the basis

such that:

, 1 +h -a, it. < 0
* ~ E jW~

The quantity Y. is the amount of flow change through node j for

each unit change of flow in arc k . Depending upon the current

ionfiguretion of the basis, and on the location of node j within

this configuration, various equations apply for calculating Y.

To facilitate understanding of these equations, reference

i made to Figure 5-4a and 5-4b. The key to the various equations

lies in the positioning of node j in the basis network. if the

basis contains a cycle, the basis tree will be broken into two

parts or semitrees as shown in Figure 5-4. Assume that the trees

and semitrees of Figure 5-4 represent a basis for some 12 node

network. In Figure 5-4a arcs A and B cannot both be in the basis

at the same time since there cannot be two cycles in the same

component of the basis network. However, for illustrative

purposes, both are shown here. The nodes indicated as i. and j.

represent the origin and terminal nodes for the entering arc

respectively. The node notation Jn in the figure refers to the

node in the basis which corresponds to the equation numbers below:

i |-4
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Eq. (9): When node j is on the basis path to node i but not on a

path to jE nor on a cycle:

* jia

-,here P.. is the directed path from node j to node iE defined by

the basis. For a basis network this path is always unique. Node

JS in Figure 5-4a is an example of a node for which equation (9) is

appropriate.

Eq. (9): If node j is on the basis path to node iE, not on a path

to J, but lies on a cycle:

(B-i)

B

keP..

where B is the cycle gain. To illustrate equation 9 in Figure

5-4a, remove arc B from the basis and add arc A. Now, J9 is a node

corresponding to equation (9). For equations (10) and (11) refer

to the original basis.

Eq. (10): For nodes such that there exists a directed path from

* node j to node jE (using basic arcs) but not to i, and node j is

not on a cycle:

-I

a iI .. " - - -
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k~
k 

!i

where PJ is the set of arcs on the path from node j to node jr"

Eq. (11): For nodes such that there is a lirected path froru node j

to node jE (using basic arcs) but not to iE and node j is on a

cycle:

ak

kE

Eq. (12): If there exists a directed path from node j to both iE

and JE, and j is not on a cycle:

1 a

k

TF k TL k
k FP ji k d P.j.

4 This is equal to equation (3) plus equation (10).
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Eq. (13): If there exists a lirected path from node j to both i

and J., and j happens to be on a cycle:

Sj (3-I) a19S

B 7 ak  7 Ck

k P .. kE .P . .

This is equal to equation (9) plus equation (10).

Nodes that Io not lie on a lirected path to either iE or

j- have:

This is represented by nodes X and Y in Figures 5-4a and 5-4b.

Note that a positive value of Y. indicates the flow in basic arc

k(i,j) will increase, and a negative value indicates that this flow

will decrease.

if arc k(i,j) is a member of the basis the flow change in

arc k per unit increase in f is:k

iq. (15):

ak

For convenience define the quantity:

r1
gk

a,

k(i,j)4 M
B

S -,
- -v • I -
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The maximum flow increase for are k is that value that will cause

a basic arc (or arc k ) to go to a bound. This maximum is:

Eq. (16):
7+  Min Fk f fIE)

Min[(o k - f) 9k k(i.j)CM, k > 01

Min f k 9k k(ij)c M B' 9 <

This equation is used if dk < 0 and f k < ck. The maximum flow

iecrease in arc k- is:

Eq. (17):

.1i ni n

Min [±k (i..j)E X~ >

Min [-(c k - fk 9 k(i. i)~ NIB, 9k <0

This equation is used if i !, > 0 and f 4 > 0. Equations (16) and

(17) are used to determine the flow change which will irive an arc

flow to a bound. For the nonlinear problem it is also necessary to
*

determine the flow change that will cause dk  to go to zero. This

is the subject of the next section.

9?

4 l
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5.5 Flow 7hange Which Drives ik  to Zero

For the nonlinear problem the value of dk  is determinedw

by:

"Eq. (s

d~ k r V *h ak77

Assume f, < c and d. < 0 indicating a nonoptimal condition.

The results of the last section indicate the flow change that

causes a basic arc (or arc k,) to go to a bound. Since i k' E,
and 7rj may all change as flow changes in a nonlinear problem, it

is possible that a smaller flow change than that determined in 5.4

will cause d. to go to zero. If this were to happen, arc k, would

no longer violate complementary slackness. This section derives

the value of flow change in arc kE which drives k to zero.

An alternative form of dk is useful here. The value dk

is the marginal cost change with respect to a flow change in arc

k E. 3ince the total cost changes only with the flow changes on

basic arcs occasioned by the flow change on arc k. the value of

k can be written:

Eq. (19):

4k + ".E

* k (i..j) E MB

lote that gk is the marginal flow change in arc k with respect to a

flow change in arc k and h' is the marginal cost. Since
k
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h<%,h2QkFN, separating the linear and nonlinear terms yields:

Eq. (20):
a

I (2Q<~g

This sum is over all the arcs in the basis since the value

k s zero except for arcss on paths which are effected by a flow

change in arc k E. in the linear network, d is not effected as

'low changes in arc k since hk is independent of flow. However,

if a nonlinear arc k(i,j) has gk O, changing flow effects hk and

hence i. . What one would like to be able to do is to compute the<1.

value of flow change in the entering arc at which dk goes to zero.

Define:

Eq. (21):

where t, was the value before the flow change.

Again separating the linear and nonlinear terms:

Eq. (22):

h~g k I (29 F.)gI
T k4C B  " X hk~gk k " MI k "

in this equation, F; is the vector of flows in the nonlinear arcs

modified as flow in arc k, is changed.

Let:

Eq. (23):

N
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where F is the original flow and n F is the incremental flow in

the nonlinear arcs.

Eq. (24):

h~ h 2QFg,,

The first three terms in this expression :omprise 1k  and the last
E

term is Ad.

Solving for the flow change that makes ' SO:

Tq. (25):

Ad-kE

Define for the nonlinear arcs the vector I, here:

Eq. (26):

42

GN " • for k 4 MI

Since Q is symmetric, equation 25 can be rewritten:

Sq. (27):
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-d -2GT F
*k~ NQFN

From the Drevious discussion:

Eq. (28):

SFN-GNfk

V Substituting for FN in (27) yields:

!Eq. (29):

U

-k N=2 N k

Solving for the flow change that causes d' to be zero:kE

Eq. (30):

~f =-d /2G TQ Gk E k. N1 N

where Af is the change in flow fk

Note that since d is negative and Q is positive definite,

the value of A fk will be positive. For the case where dk is

positive, a negative value for f, results. This is appropriatek E

since it indicates that the flow on arc k. must be reduced to drive

dk  to zero.

The result of the above formulation is a value for flow

change in the nonlinear arc k, which causes d to be zero. This

limiting value is compared with the flow change determined by

equation (16) or (17). The minimum of these two values will

determine the amount of flow change to apply to arc k. If the

4
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limiting arc is determined by equation (16) or (17) arc <E will

enter the basis and the limiting arc will leave. If the limit is

obtained by equation (30), the flow will be changed, but the basis

will remain unchanged. In this case, the nonbasic nonlinear arc

will have flow between its bounds.

The above represents a general development for solving the

nonlinear nonseparable quadratic network.

This presentation justifies the inclusion of these

nonlinear quadratic arcs in the network in their nonseparable form.

To implement this new theory into the linear codes of Jensen and

Barnes (1980), six new subroutines were created and several

existing subroutines required some modification. These new codes

were assembled in a package called NONLING and tested in the

presence of positive and negative gains. These subroutines are

flow charted in Part rI of the Appendix.

4



7-APTER VI

. stimating the Benefit Function

6.1 leneral

The preceding sections have shown that by exploiting the

special stricture of networks in a dynamic programming approach an

expression can be derived which represents the future expected

value of stored water. This was done by utilizing a single period

network representation of a water resources system. Through the

selection of discretized initial levels and the incorporation of

stochastic inflows to these initial levels, the total water

available to the period was determined. Subsequently, through

successive random draws from the distribution of the stochastic

inflows, enough data was assumed to be generated to allow a

reasonably good approximation of a benefit function using a least

squares fit of the observed network optimal solutions.

The water resources problem solution procedure requires two

types of information in order to produce meaningful and useful

results. The first type relates to the specific network

parameters. These include all of the arc parameters, the river and

* reservoir data, demands, runoff distribution, etc. Naturally, this

information is problem specific and would most generally be

supplied by the user. A second class of information, however, is

both model specific and user oriented and relates to the accuracy

126
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and credibility of the model. This class requires the answer to

several questions.

1. How many discretizatipns of reservoir contents should be
4

used and from the total number of possible level

combinations generated, which should be used for an optimal'

design for this experiment?

2. What method of least squares regression should be used

to fit the data obtained?

3. How many replications from the assumed '<nown inflow

distribution should be used for each level combination?

4. How can convexity be assured?

After addressing these four questions, and having observed some of

the results, additional concerns require attention. These include:

5. Examining the variance covariance matrix to measure to

validity of the least squares regression

6. Consideratioa of weighted least squares

7. Problems associated with weighted least squares

Finally, based upon all of the above analysis:

S. Determination of the data requirements for estimating

the benefit function.

These questions and related issues will be addressed in the

next 3 sections.

6.2 Design of the Txperiment
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The process of estimating the benefit function requires the

discretization of the water levels in the system reservoirs.

• consider a three reservoir system where each reservoir has a

capacity of 25 units of water. 3ach unit will represent some

specified number of acre feet. The hypothetical reservoir system

of Figure 4-1 will be used throughout this discussion. This

hypothetical example is further exercised in detail in Chapter 7.

Note, there is no requirement for these reservoirs to be equal in

size and the reservoir sizes are input parameters to the model, set

by the user as dictated by his specific system.

Reservoirs are typically divided into zones according to

their functional purpose. Linsley and Franzini (1964) define these

zones as shown in Figure 6-I. For a very low level of water there

is a minimum volume referred to as the dead storage pool. This is

the level below the sluiceway where water cannot be released from

the reservoir for other uses. At the very top of the reservoir, a

flood pool is normally reserved. The purpose of this pool is to

allow the temporary storage of water during heavy inflow

conditions, thus preventing high water flood conditions downstream.

During normal operations. This flood pool will usually be empty.

Between these two pools is the useful storage volume. It is this

portion of thereservoir that is of primary interest to this study.

This useful storage is the portion of the reservoir that will be

discretized for the dynamic programming approach. The percent of

reservoir volume in the dead storage pool and in the flood pool is

A

4
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iependent upon the specific reservoir. Within this useful storage

range, members of the Texas Water Development Board indicate that a

reservoir holding only 50 capacity could be considered as having a

severe shortage (depending upon the size and use of the reservoir).

Thus, although the total useful storage pool is available, the user

may be concerned about only a portion of it. Thus, the range to be

discretized will be left to the user and he has complete

flexibility (within the usable storage pool), in determining this

range since the maximum and minimum water levels are input

parameters to the model as a percent of reservoir capacity.

Regardless of the range it is necessary to determine the number of

levels or discretizations to use to produce a meaningful set of

data, and finally, what subset of the total set of level

combinations can be used to achieve an optimal design?

The significance of the number of discretizations lies in

its effect on the accuracy of the quadratic fit and on the

computational time required. rdeally, one should use as few

iiscretizations as possible which yield the best "or near best" set

of lata for a quadratic fit. The total number of possible level

combinations is equal to the number of levels (NN) raised to the

number of reservoirs (R) power. Notationally, the number of level

combinations is:

NNR

regardless of the range.

For a three reservoir problem with three levels selected

.1
# _ _ _ _ _ _
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for each, there are 33 27 combinations of initial reservoir

levels considered. For five levels there are 53 = 125 total

* combinations. Extending this to a larger problem, say six

* reservoirs and five levels there would be 15625 combinations.

As noted in the dynamic programming algorithm of Chapter 4.,

random inflows are added to the reservoir levels at the beginning

of the period to yield total water available. Network solutions to

these problems yield the desired observations which are used to fit

a quadratic. Naturally, one does not need 15625 data points to fit

a quadratic having 29 coefficients (which is the case for a six

reservoir problem).

Assume for now the three reservoir case and three levels

of discretization for each reservoir. The problem then is to select

from the total set of level combinations an optimal set of design

points. Using this terminology, a design point relates to a level

combinatien Figure 6-2 shows a three level cubic representation

for the three reservoir problem. Note, there are 27 distinct

points on and within this cube represented by the intersection of

lines (ignore the highlighted points for now). Each of these

points represents a level combination or a design point. The goal

* is to select some subset from these 27 design points which will

yield an otimal design. Box and Draper (1971) and Mitchel (1974a,

1974b) have defined an optimal set of design points for first and

second order models. Their work is specifically for least squares

approximations where the ;inderlying error has a normal

I L | |
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1

Figure 6-2

Three Reservoir, Three Level

Cubic Representation

V
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distribution.

To of the basic approaches to choosing an n-point

experimental design are (i) to set down a simple factorial or

fractional factorial design in the factors being studied, or (ii)

to choose a design based on the well known det(XX) criterion.

Box and Draper (1971) indicate that the first method is much more

simplistic and that the second is their preferred approach.

Details of their preferred approach are presented below and

have been utilized in the computer program.

Before presenting their approach, a few new terms need to

be iiscussed. A iesign point has already been defined as being

equivalent to a level combination. A design point has dimension

'!xR) for an R reservoir problem. The design matrix was defined in

napter I as being the matrix of independent variables to be used

fir the regression. A full quadratic has been selected as the

model to be fit by the regression. ?or the three reservoir, three

discretization problem, this yields a design matrix of dimension

'?'x1O) if all design points are used. To use the notation of Box

and Draper and to be consistent with standard notation for

* regression analysis, this design matrix will be referred to as the

* X matrix.

in their preferred approach, the criterion for designing

experiments is based on maximizing the determinant of (VX)

indicated here as det(VX), (x' is the transpose of the K matrix).

Use of this criterion dates back to Smith (1913). The criterion

• •
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has many appealing properties and its use has been justified in a

number of ways. Box and Lucas (1959) indicated that its use leads

to a confidence region for the parameter estimates of smallest

hypervolume in parameter space. Kiefer (1961) showed that a design

which maximizes det(X'X) also minimizes the maximum variance of any

predicted value (obtained by using the regression function) over

the experimental space. Further properties of this criterion are

that it minimizes the generalized variance of the parameter

estimates, and that the design obtained is invariant to changes of

scale of the parameters. This is an important property not shared,

for example, by the criterion: minimize trace (W-I, (i.e., min

the average variance of.the parameter estimates).

Box and Draper (1971) considered several discretization

techniques and found that the best design for a quadratic fit was

to use three levels consisting of both end points and the midpoint

of the selected range. These design points correspond to the 27

points of Figure 6-2. Thus, there are 27 design points from which

to choose.

The choice of three levels of iiscretization runs contrary

to the typical dynamic programming approach. Klemes and Doran

(1977) specify 5-10 levels in their divided interval technique,

while others say as many as 30 levels may be needed. However,

these levels are not being used in the typical dynamic programming

manner. The requirement is to select enough levels to allow a good

approximation of a quadratic benefit function and three points are

4"4
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sufficient to fit a quadratic. in practice, once in expression

which reflects the future value of water has been derived, the user

can apply the actual water levels to this function resulting in an

operating policy representative of the current situation.

What m ust be done next is to select n of these design

points and apply the det(X'X) criterion, (n in this case can vary

from 10 to 27). The design matrix for the full quadratic would now

have dimension (nxlO). For any given n, there are C27 subsets ton

consider, and for each n, there will exists a "best" design set in

terms of maximizing det(X') ) For example, if n = 20 there are

27
C20 388,030 different subsets of 20 design points to evaluate.

Calculating the det(X'X) for all 388,030 of these subsets will

result in one of them having a determinant that is greater than or

equal to all others. The subset with the maximum Jet(W'X)

represents the best set of design points to use, given that 20 are

to be used. 'low, plotting the optimal det( X') obtained for each n

yields a form similar to the one shown in Figure 6-3. Through

this process, Box and Draper were able to derive an optimal design

for a quadratic which has a general structure and can be applied to

* Droblems of three or more factors.

The resulting optimal design is referred to as the "cube

plus star" design. Mitchel (1974a, 1974b) refers to it as "D

optimal" experimental design (the D referring to the determinant of

the X' matrix). This "cube plus star" nomenclature essentially

describes the design. in Figure 6-2, the "cube" refers to the

4. ....
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eight vertices of the cube. The "star" is defined as the center

point on each of the six surfaces of the cube and one point exactly

in the center of the cube. This results in a total of 15 design

points of a possible 27 points in the three factor case. These 15

points are the highlighted points of Figure 6-2.

Tn general, if there are R reservoirs or dimensions to the

problem, there will be:

2R + 2R + 1

design points. This means that for the six reservoir case

mentioned before, rather than using five discretizations for a

total of 15625 design points, only three discrete levels and 77

total design points are required.

One possible disadvantage of the det(X'X) criterion is that

it is a "variance criterion" and effectively assumes that the model

considered is the trie model. Box and Draper (1971) point out

however that in situations where the design is physically

restricted to a cuboidal region of interest, the difference between

the spread of the design points for the best all-bias design and

for the best all-variance design is minimal. Thus, they conclude,

o that the det(X'X) criterion appears to be not unrealistic either

when the model is correct or when the design is restricted to the t

region of interest, or both.

The det(K'X) criterion applies to normal least squares

problems where the variance about each design point is constant and

there is no covariance present. Thus, the variance covariance

i
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matrix has the standard form:

F02
22

The variance covariance matrix for the three reservoir

problem will have dimension (15x15) where each row represents one

of the 15 design points. The columns have the same meaning. The

values on the main diagonal (a) represent the variance about the

mean of the calculated response for each design point. This

variance is determined by taking a number of replications at each

design point and calculating the variance using standard

statistical methods. This variance is considered to be the same

for all design points. This is the definition for homoscedasticity

of data, Clark and Schkade (1974). All variance covariance

matrices are symmetrical. This particular one has all off diagonal

elements equal to zero. This indicates that there is no covariance

present. This is necessary for the use of normal least squares

regression which will be presented next.

-m-i-V _ _ _ _ _ _ _ _
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6.3 Normal Least Squares

In the analysis of variance, for the normal least squares

method:

b - (('X)'Ix'Y

where:

X is the design matrix (independent variables) X'=X

transpose

Y is the vector of dependent variables (mean of the

replications)

b is the vector of estimates of the coefficients

The variance of the coefficients is found by:

V(b) = (XX)- (X'VX)(X'X)-

where V is the variance covariance matrix. This reduces to:

V(b) (x'x) - 1 T2

when a 2 is known and V is considered to be the Identity matrix.

For independent observations, this assumes that the variance

covariance matrix of the design matrix is of the form:

V 0 a0 si
Here as before, the diagonal element (ii) represents the variance

p(

of the replications about the mean of the ith design point. For

the water resources problem, is not known. Consequently, an
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-stimate of T - must be derived by performing enough replications

at each design point to get a reliable estimate of V, which in

this *zase is synonymous with the V matrix. Choosing the number of

replications is the subject of the next section. Given that V has

been derived of the form shown above, the variances of the

estimated coefficients can be calculated using equation I

6.4 Repl ications

A means for determining the number of draws for deriving a

good estimate of 1- is to select some acceptable relative error

(alpha) which represents the ratio of the standard error of the

estimate of the variance to the true variance.

t is kcnown that:
(2  2kl X2vr( ,()- "
2

'where k is the number of draws, X2 is the notation for the chi

square distribution and Y is the degrees of freedom for the chi

3quare distribution.

k-i ) 2  Var(s 2) " 2(kc-)
4 2

Si < alpha

4
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SE is the standard error of' the estimate of the variance, s2.

Thus the relative error of the estimate to the true error is:

6 ~~2)

For fixed values of alpha k can be determined. A few

values are shown i.n Table 5-1.

Table 6-1

Number of' Draws Required to Meet Specified Accuracies

-alpha k

.30 22

.25 30

.20 100

.10 200

.07 500

If the process described by the reservoir system were relatively

stable or unchanging from period to period, V could be estimated to

the desired accuracy one tlime using a large number of' draws. Then

*through the use of' ordinary least squares equations, the variance

of the coefficients of' the benefit function for each period could

be determined. For this problem, many things change from period to

period, specifically, the inflows and arc parameters (including the

'~matrix) for the nonlinear arcs. These changes require that the V
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matrix be reevaluated for each period since each period is in

effect a new problem. This would suggest using as few Iraws as

* possible to keep the model computationally feasible. 30 draws will

be used for the example problems and this is considered adequate

for the water resources problem. If the user desires greater

accuracy, naturally he can increase the number of iraws at theF expense of time.
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6.5 Maintaining Concavity of Benefit Functions

A requirement of the optimization procedure is that each

benefit function derived by the quadratic fit and subsequently used

in the lynamic programming procedure must be a concave function.

Thus for each t, BF(t) must be concave. This requirement oe

from a limitation of the network flow optimization algorithm of

Chapter 5. Specifically the algorithm only works to find a flow

solution wihich minimizes total cost if the total cost function is

convex. Since the negative of the benefit function is part of the

cost function, this requires that the benefit function be concave.

This limitation of nonlinear minimization algorithms to

covxobjective functions is not uncommon. myThe presence of

cnaeportions of the objective fucinmyresult in local

minimums. Algorithms to handle th oegeneral problem are

uulymuch more complex and require more computation time for

obtaining a solution. At any rate the netwdork flow algorithm can

handle only convex cost functions (or concave benefit functions).

The requirement of concave benefit functons does not seem

to impose serious practical limitations for the -water resources

problem. It is clear that the marginal value of water stored for

the future should be declining with the amount of water stored.

This can be proved to. be truie for the models used for this

research. However it is quite possible to happen upon a

nonconave quadratic fit if proper precautions 'Are not taken.
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Sven if the underlying model has a concave benefit, if' independent

random observations are taken at each design point statistical

error may result in a convex fit. This is especially likely if the

model is nearly linear. One thing that could be done is to check

the quadratic matrix for negative definiteness after each benefit

function is derived. However, in the event that the benefit

function is not concave, an alteration of' the fit would be required

in order to continue. It is not clear how to perform this

alteration in the general case. Instead of resorting to this

manipulative alteration, a random sampling procedure will be used

-which will insure a concave form.

As indicated before, a series of random numbers which are

used to derive the stochastic inflows is selected. If' a different

random number is selected for every design point, there is Yao

assurance that the final fit will be a concave quadratic,

regardless of' the number of' replications.

To assure concavity the same set of' random numbers will bezI

applied to every design point. Thus, if' there are to be k

replications for each design point, there will be a total of' k

random numbers. These same k random numbers will be used to

generate the k replications for all levels.

To illustrate this idea, refer back to Figure 4-4. In this

figure, there are L~ design points. The response matrix is (L -44

where k is the number of draws. Note that the wt draw is applied

to all i levels of the lesign. Next, the Y, are averaged over the

ia-
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k replications and these mean responses are then used to fit the

* quadratic. Thus, it will be shown that by using the mean response

* values, obtained through the application of a constant set of

random numbers, concavity will be assured.

Consider a particular design point i defined by the

reservoir contents St- A random draw w determines an inflow
i(t-1 )

vector I . Since the inflows are assumed to occur at thew

reservoirs, the total water inputs to the system for design point i

and random draw w is:

Si~t_1 ) *1I

These inflows appear in the network model as positive external

flows for the reservoir nodes. The optimum flows are determined

for the network model and the minimum cost is the response Y i,w"

The network problem has a convex objective function since the

problem is linear except for the convex function -BF(t).

Let Y.(I) be the value of the minimum cost solution of the

network model as a function of the vector I . It is well .knownw

that the minimum value of a convex objective expressed as a

function of the right hand sides of the constraints is also convex.

Thus, Y (I ) is a convex function with respect to I . The*iv w

procedure used to obtain BF(t-1), samples from the distribution of

I to obtain k distinct values. The k response values of Y. thusw iw

obtained must fall on the function Yi(Iw). By following the above

procedure for the water resources problem, the possibility of

generating response data that was nonconvex was removed.

" : ' ... . .. '. ' 7 " .. . " .. . -- - ' "r: : 7 " - ... -- ".. .. . ... . . ... ..7-
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6.6 Covariance Matrix Derivation and Analysis

Because of the requirement to use a constant random number

set for all design points, a high degree of correlation between

the design points has been induced into the model. The fact that

this correlation is present requires the consideration of using a

weighted least squares regression analysis.

Whether weighted least squares or ordinary least squares is

used, it is required that a very good estimate of the variance

covariance matrix (V) be derived. This is necessary since the

variance associated with the problem is not known apriori. Because

of the possibility of correlation being present it is necessary to

derive this V matrix for use with both the ordinary and weighted

least squares analysis.

The set up for weighted least squares analysis when all

design points have common random inputs goes as follows:

Let:

Y. response at the ith design point when the random

input is the wth random sample from a given distribution

I ii' xi2...xiu) - u-vector of settings of the

independent variables at the i design point, 1 < i < n.
where n is the number of design points used in the n-point optimal

design.

The assumed model where B is the assumed coefficient is:

u

Y i,w *j xij iw
Ja ,

- -w
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'ih ere:

"£, N(o' IF2), j< i < n
* 2

and where qi depends on i.

Now by supplying the same random input w to all n 4esign points,

the result is:

Co(i,wYj'W) oy i'w' jw )

- v o. # 0
13

With the notation:

YI~w B1V (V

Y B
n,v

Ln , n, 

the overall model in this situation becomes:

q(-):
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Averaging over K independent replications of the random input,

7iells:

Eq(3):

",here:

-- i

-J L -1"
i* I

K

0~' apply wNeighted least squares (WLS) analysis to (3), the variance

covariance matrix V for Iis required. Pick two lesign points i

and .J; compute:

oK
7-E l '

I .~ -
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1 K K

1 *1
low v m =w and m are independent =

Cov(F. ' 6. ) -- .E '
i~w' mi'W jm

i'; - E( .i ) E( ja.

The last two terms here are equal to zero by the assumption of the

model.

This leaves:

since w and m are independent.

On the other hand, for w m:

Cov( Ei.,,,,j,( i '' E "d
=V.

°

K 0

i' K2 L.cov V .i v
K V . 2 V~.

K2  K
I )) - IV

V (Cov(l it i 0S K
= a'<cov( i' VE))

K'

- 4.cov(Yq , Y., )
- K i

Thus to estimate V, compute:

Tq p4):

V'ijKJ " "

K , ) Yi,,w Yjw j.-

K K o1
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* An exammie of a variance covariance matrix derived in this

manner is shown in Table 6-2. Three things should be noted when

*observing this V matrix. (i) The off diagonal elements of this

matrix are definitely not zero. This means that there truely is a

significant covariance relationship as expected. This will be

illustrated under (iii) below. (ii) For this V matrix, the main

diagonal elements, which represent the variance of the replications

about the mean response, are not significantly different. These

diagonal elements represent the variances of the response about the

mean of the various design points.

The test used to determine whether or not these variances

are statistically equivalent ithBurFoster Qtest Statistic

(Burr (1974)). Qis used here to distinguish this test statistic

from the Q (quadratic) matrix.

2
In terms of the sample variances a : computed within each

treatment, the Burr Foster test statistic is given by:

i=31

where n is the number of samples or design points in the optimal

design. Large values of Q lead to a rejection of the hypothesis of

equal variances.

The calculated Q statistic for the data of Table 6-2 is

.0~771 . From a Burr Poster table of critical values, a statistic
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of .08 or greater is considered significant at the .001 level with

29 degrees of freedom. Thus, the design points for the optimal

* design can be interoreted as having equal variances. (iii) The

* third feature to note when examining the V matrix of Table 6-2 is

the correlation coefficient, denoted as P. This coefficient is

calculated by:

p covariance(X,Y)
xy (v(X) V(y))1 /2

It can be shown that -1 < P < 1. The quantity P is a measurexy- xy

of the association between the random variables X and Y. For

example, if P = X X and Y are perfectly correlated and thexy

possible values of X and Y all lie on a straight line with a

positive slope in the (X,Y) plane. If P = 0 the variables arexy

said to be unassociated, that is, linearly unassociated with each

other. Calculating the value of P in this manner for the data ofxy

Table 6-2, results in finding that all of the correlation

coefficients are .99. It is quite clear from this data that X

and Y are nearly perfectly correlated for this example. It is also

quite clear that the off diagonal elements are not zero. This

indicates that weighted least squares regression analysis should be

* considered.
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6." Weighted Least Squares Regression Analysis

Derivation of the V matrix was done in section 6.6 using a 5

set up for weighted least squares analysis. Estimation of the

* benefit function coefficients and their variance for weighted least

squares is as shown below.

For the weighted least squares method:

- b = (X'v-'X)-'X v-Y

where V is the 3ame variance covariance matrix as before.

if the observations were independent:

2 0

2

I L

where some of the T i may be equal.

Recall however that taking the same sequence of random

iraws f-c^, each iesign point results in a highly dependent

stricture. onsequently the full 7ariance covariance matrix (V) of

the observations must be considered. This V matrix will be (15 x

whoe the i,jth entry will be:

cov(Y,Y w)

and the covariance is defined as:

lov(T. Y w

This is the same expression obtained before as equation 4.
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An equivalent expression for this Covariance which circumvents some

of the numerical roundoff errors associated with these calculations

is:

V . Cov(Y 1y.w Y )(Yjw-yj)

V iw' jw li W-1'r

Given this V matrix calculated as equation (5) or (6), the

variance of the coefficients for weighted least squares analysis is

expressed as:

Tq (7):

V(b) - (x'v- X)-

6.9 Covariance Matrix Singularity

The fact that there is a highly correlated structure due to

the procedure for selecting and applying common random draws for

all design points cannot be ignored. This fact should suggest the

use of a weighted least squares approach. Because of this

significant correlation, a near singular V matrix is derived. For

most problems this occurs for the period T data. In these cases

use of the weighted least squares formulas, requiring inversion of

* the V matrix simply do not work.

The reason for this singularity is that due to the method

of applying common random numbers, there is a strong dependency

between responses over the entire iesign space. So strong in fact

that the correlation coefficients for the covariance are nearly all

A.g
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.99. This suggest that all of the responses lie in or very near a

hyperplane in 15 space. ?or the case of 15 design points, given

* the other 14 points, the 15th  can be predicted with very good

accuracy. This interpretation follows from the fact that the

noninvertability of the V matrix implies:

let(v) 7 0

This is the same as saying there exists a vector "a" such that:

Ia Va - 0

which implies:

Var (=a i  - 0
i=I

This then comes from the definition of a hyperplane in 15 space:

aiYi - C

Now, a hyperplane in 15 space can be thought of as shown in

Figure 5-4. Some of the problems start out as invertable weighted

least squares problems, however, all of the responses fall within

this hypervolume in 15 space. Initially, this hypervolume may be

large enough or thick enough that the V matrix is invertable.

Taking the result of the inversion and estimating the next set of

coefficients has the effect of squeezing down this hypervolume

until eventually it is too thin to allow an invertable form of the

V matrix.

-- -' -..
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Figure 6-4

Illusion of' Hyper-volune in 15 Space
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To support this theory a linear regression was performed on

the response data using T, as the dependent variable and the

remaining 14 mean responses as the independent variables. The

model to be fit was thus:
15

YI- B +B?. +
V 1 j~

The results were even more convincing than anticipated. The

results of this regression are shown in Table 6-3(a).

Next a similar regression was perforaed on a set of data

that was originally invertable and observed that in fact this

matrix was nearly singular from the outset. Table 6-3(b) shows the

results of this regression.

These tables conclusively support the theory that the means

of the responses all lie in a hypervolume in 15 space. Further,

this totally explains the noninvertibility of the variance

covariance matrix.

Thus. while weighted least squares analysis is indicated in

nearly all of the data, its use brings about its own demise due to

the noninvertibility of the V matrix. Consequently, the

recommended methodology does not utilize estimation of the

coefficients using weighted least squares.

Table 6-i in section 6.3 showed the number of draws

required to get some specified accuracy of estimating the V matrix.

If the problem did not change from period to period, the V matrix

could be estimated one time using a large number of draws, and then

a fewer number of draws could be used for subsequent periods.

4-i
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Table 6-3

Results of Linear Regression

(YI with Y2 through Y15)

(a) (b)

Not
Invertible Invertible

R-Squared 1.0 1.0

Standard Dev. .00835 .1104

Residual(SS) .00599 .18291

F-Value 354422760. 1400488.

Significance .0 .000

A
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Since the same number of draws will be required for each period

another criteria for determining the number of draws is to select

k' so as to control the maximum variance of the predicted error.

This is different from the derivation of the number of draws for

* the V matrix in the following way. Recall that in deriving the V

matrix equation (4) was used where:

Eq /3):

1 ov(Y,Y)vii

Here K is the number of draws which is determined by the selection

of an acceptable relative error as in Table 6-I.

Controlling the maximum variance of the predicted error

requires that the variance covariance terms derived in equation (4)

be used but without the division by K. Let:

Eq (9):

V = KV0

This is the desired V matrix for making this determination. Now

for ordinary least squares it is desired to select k' large enough

to control the maximum variance about the mean of the worst lesign

point, or:

. Eq 10):

Max ((XX)- (XVX)(X'X)),1,12 (t1/,df-)/7 < Del

where0

x . row in X matrix with largest variance0
k number of draws

II"
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t student t value for desired accuracy with given d.f.

Del = absolute tolerable error (4 of Y
0

Rearranging:

q ( )2 ax (Xo(xx-'(xvx)(X'x )k , =  %/2 df x -
Del 0

The results obtained using the normal least squares

calculations as applied to the data of Table 6-2 follow. In this

case, the initial V matrix was obtained using 30 draws. By

applying equation (9) to this matrix and using the result (V ) in

equation (11), k' was determined to be approximately 20.

Table 6-4 shows other results given various settings of

alpha and the tolerance level in absolute error.

Table 6-4

Number of Draws for Controlling Maximum Variance

Number Tolerance alpha Calculated
draws for V level setting draws

30 .05 .01 20

30 .01 .04 30

100 .01 .05 33

100 .01 .01 32

prom this table it would seem reasonable to use either 30

draws (alpha = .04) or approximately 90 draws (alpha = .01)

depending upon the desired accuracy. These two choices seem
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reasonable since in both cases the number of draws used to estimate

V and the calculated number of draws are nearly equivalent. As was

lone in section 6.3, 30 draws will be used. Again, the user can

use more draws if greater accuracy is desired.

6.9 Selected Methodology

Given the statistical information just presented, it is

desired to select a prudent and statistically sound heuristic for

the general problem. 3oth the accuracy of the model and its

computational efficiency must be considered. Experience has shown

that each three reservoir nonlinear network requires approximately

.0115 seconds of CPU time. Due to the lynavfic nature of the water

resources problem, it is necessary that the V matrix be updated

every period. Accordingly, the selection of the number of draws

(K) to estimate the V matrix and the number of draws (k') for the

periods to follow should ideally be the same.

For these reasons, it is felt that a minimum of 30 draws

should be used for estimating the V matrix and for subsequent use

in calculating the variance of the estimated parameters. The

estimation of the parameters will be calculated using ordinary
9

least squares methods, and if the variances of the parameters is

calculated, it will be done using the full V matrix in the manner

of equation 4.

While the main interest lies in the estimate of the

parameters it is instructive to know what levels of variability

L
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exists. By using 30 draws per level for all periods a reasonably

good estimate of the parameters will be achieved with a minimum of

computational time.

9 The relative error of the standard error of the estimated

variance to the true variance is 25%. Given this 25% criteria,

very high confidence about this estimate is realized as indicated

t table (see Table 6-4).

In summary, it is felt that 30 draws is a good compromise

between accuracy and computational time. For 30 draws per level

and 15 levels per period the computational time will be roughly 7

seconds per period for the three reservoir problem. The number of

periods to use is highly dependent upon the specific problem being

considered, its intended use and the availability of data. This

will be addressed more fully in Chapter 7.



CHAPTER VII

7. Example Applications

This chapter includes several example applications to

demonstrate the feasibility of the model. Section 7.1 includes two

network formulations with some variations applied to both. SectionV 7.2 includes a representative application to the Guadalupe River

Basin in Texap by attempting to evaluate a proposed new system to

meet the demands of the year 2020.

7.1 Hypothetical Problems

This section includes both a three reservoir and a four

reservoir example problem. There are two versions of the three

reservoir problem, the differences being in the number of arcs and

the selection of the arc parameters.

Figures 7-1 , 7-2 and 7-3 represent the three problems to be

considered. These will be referred to herein as examples 1 , 2 and

3 respectively. Although the node structure of Figures 7-1 and 7-2

are the same, note the iifferences in the number of arcs and in the

arc parameters. *The network of Figure 7-2 assigns a benefit to

* having a minimum amount of water in the river reaches. This may be

necessary due to hydroelectric concerns or perhaps due to concerns

U for aquatic life. Additionally, the beneft for supplying demand

163
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are revised in this figure which tend to place more value on

meeting the current needs than the benefits for demand of' Figure

7-1.

Reference has been made throughout this report to Figure

-' 4-1. The network of Figure 7-1 is identical to Figure 4-1 and many

of' the experimental results are used throughout this report.

For Figures 7-1 and 7-2, -all reservoirs have a capacity of

25 units of water with an allowance for 5 additional units as a

czostly high water condition. The discretizations are (.5, .7, .)

For Figure 7-3, the capacities of the reservoirs are (40, 20, 30,

25) for nodes (1,5,9,13) respectively. For this example the same j

discretizations of (.5, .7, .9) are used. In this chapter, Q (the

quadratic matrix) will use the subscript t. This will mean that if

T 12, QT will be the assumed quadratic benefit function for

period T, and the dynamic programming algorithm will generate Q

for t-11, 10, 9 ...... in this order. Additionally, when Qt is

used, it will imply the existance of the associated linear terms of

the full quadratic, in addition to the quadratic matrix itself.

Using this notation, QT for Figures 7-1 and 7-2 is taken to be the

negative of the benefit function used as the example in Chapter 5.

Qfor the example of Figure 7-3 uses the identity matrix for the

quadratic matrix. Q, terms for these problems are summarized in

Table 7-1 which includes the quadratic terms and the associated

linear terms. For both cases, the Q. terms were arbitrarily

selected.

i
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Table 7-1

4 Assumed Conditions for QT

Figs 7-1,7-2 Fig 7-3

f B -59.22 -15.0 f

f B2 -46.61 -20.0 f2

f B3 -39.69 -25.0 f3

f2 B4 .86 -30.0 f4
1

f2  35 .53 1.0 f2
2 1

f2 B6 .52 1.0 f
3

S37 .64 1.0 f2

S B8 .40 1.0 f2

1 34

f B9 .68 0.0 f 1f 2
2 3

310 -- 0.0 f f3

311 -- .0 f f4

B12 -- 0.0 f 2 f 3

B13 -- 0.0 f 2 f 4

314 -- 0.0 f 3f 4

i
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In analyzing these problems it is interesting to observe

the effects of two primary factors, (i) the nature of the inflow

diata and (ii), the effect in the long run of the assumed values for

T'These two issues will be addressed in the next two sections.

7.1.1 Model Response To Inflow Data

To address the first issue Q T was arbitrarily selected as

shown in Table 7-1 and the inflow pattern was varied. Three

variations of the inflows were considered as shown in Figure 7-4a,

b and c. Figure 7-4a represents inflows which are low in the

present and monotonically increase to higher conditions in the

future. Since the algorithm works backward from the future to the

present it is expected that the current decisions will not insist

that water be stored as a first priority since the model foresees

more supply in the future.

Figure 7-4b represents the opposite inflow situation to

that Just discussed. Here there is more water in the present but

less is anticipated in the months to come. It is expected in this

case that the model will attempt to save some water for future use.

*Finally, Figure 7-4c depicts the water fluctuating

throughout the time horizon going from wet to dry then wet to dry

again. This may be more representative of the inflow profile over

a longer time horizon. ?or the examples, T was selected to be 12

with each period being equivalent to one month.

These inflow characteristics and the network of Figure 7-1
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*will be referred to as example 1-1, 1-2 and 1-3. Similarily,

* applying these inflow profiles to examples two and three will yield

* three cases each.

For all of these problems, inflows were assumed to be

distributed normally with standard deviations running from 50% to

30% of the mean for all reservoirs. Actual inflow data for the

profiles of Figure 7-4 are included in Part I of the Appendix.

The negative of the derived benefit functions for QIfor

each of the example 1 cases are shown in Table 7-2. Tables 7-3 and

7-4 show similar results for examples 2 and 3 respectively.

Some comments regarding the daita of Tables 7-2,3,4 follow.

There are two primary things to note wien evaluating these tables.

The first item of interest for these tables deals with the

magnitude of the linear terms of the benefit function when compared

to the other negative costs of their respective networks. As an

example, consider Table 7-4 and Figure 7-3. Consider the routing

of flows as the flows i.nto the system at the reservoir nodes are

increased from an initial zero level. The first unit of flow will

be routed based solely on the linear cost contribution, since for

'he nonlinear arcs, there is no quadratic contribution to the

marginal cost at zero flow. Consequently, for example problem 3-1

* which foresees a wet future, the initial allocation of water is to

meet current demands. This is seen by comparing the negative

benefit for supplying demand with the negative linear terms in the

benefit function. Uisers 6 and 14 will first be supplied water
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* until their minimum demands are met (saturation of one of the

demand arcs). User 14 will also supply its secondary demand before

-any "l~ow is allocated to the reservoir for future storage. Users 2

1:and 6 will compete for water almost immediately with their

reservoirs.

For the inflow profile of Figure 7-4b, the future is1' expected to be dry. In this case, note the extreme change in the

linear terms of the nonlinear arcs which indicate a strong desire

to store the initial allocation of water, (likewise for the inflow

profile of Figure 7-.4c). This pattern also holds for the data of

Table 7-2. Table 7-3 is unique in that the linear cost terms

assigned to the nonlinear arcs do not change much at all over the

three inflow profiles. This is a result of placing large negative

costs on the river arcs of Figure 7-2. For this example, the

current needs dominate the entire process and in the end, all

demands (both users and storage) reflect near equal priorities.

The second item of interest is the amount of quadratic

effect realized. For all three example problems, as the future

supply of water decreases, the quadratic terms increase.

Similarily, for inflow profile 1, these terms are very small

indicating a near linear situation. Thus, as the future supply of

water decreases, interactive forces tend to arise which supports

the hypothesis of reservoir interaction.

'One final comment on these tables. The data for inflow

profiles and 2 cannot be compared directly with profile 3 because
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there is more water oversll in profil~e three. For profile 3,

period 1 has a very large amount of inflow, as do the next few

periods. Thus, the results for this profile are altered by current

and near term high inflow conditions. This could be -what is

causing the biggest difference in the coefficients.

As an additional display of the model results, Table 7-5

shows one of the negative benefit functions along wi th the

calculated standard deviations for the estimated coefficients.

These standard deviations were calculated using the methods

described in Chapter 6. These results are very similar for all

example problems and indicate that in fact, 30 draws does yield

very good estimates of the coefficients. An additional test was

performed using this data. Rather than estimate the coefficients

and calculating their variance using the normal equations, the data

was provided as input to a least squares regression package

(3'TXREG). The disadvantage of sing FIXREG regularily is that it

requires considerably more time due to thenumerous statistics it

generates and to its built in plotting capability. However, it was

used on occasion to assure that meaningful results were being

generated. Am example of some of the results are also shown in

Table 7-5. These t and F levels of significance and the overall

R 2term conclusively support the quadratic as a valid function for

the regression. This example is highly representative of the

results for all example problems. -
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Table 7-5

Statistical Results for Coefficients

Std.Dev T-STAT

30 -250.9 28.8 3.-7

B1 -25.9 .38 68.2

B2 -16.0 .19 84.0

B3 -15.9 .19 93.0

34 .274 .012 23.0

35 .099 .002 49.5

B6 .103 .002 51.5

37 .t27 .007 18.1

38 .114 .008 14.3

39 .184 .004 46.0

R= .999+

F Significance 5.8E*5

4r- 4
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* 7.1.2 Operational Use of Benefit Functions

I: Once the benefit functions have been derived by the dynamic

programming procedure, they should be useful in an operational

context to make decisions on the optimal distribution of available

0 surface water in any given month. The function can easily be saved

by storing the coefficients of the quadratic form and the linear

coefficients. This use of the benefit functions is illustrated in

this section using the benefit functions derived for period 1 for

the example cases.

To use the benefit functions the decision maker must

observe his reservoir levels at the beginning of the month,

calculate or observe the expected inflows and run the single period

optimization one time. The resulting flows will determine the

policy for period 1 .

To implement this activity with the computer codes used for

the dynamic programming procedure a few changes need to be made to

the data set. The required changes are very simple and do two

things. First, they force the logic to skip certain calculations

that pertain to multiperiod and mult-draw problems. Second,

specific changes to the input data set allow the user to specify

his desired conditions.

Using the benefit functions of Tables 7-2, 3 and 4,

several period 1 conditions were assumed. These assumed conditions

represent the sum of the observed reservoir levels and the expected

inflows for the period (ie. total water available for period )
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With these total inflows the optimum flows were obtained by the

network algorithm. These flows describe the optimum decision set

for each condition. Some of these are shown in Table 7-6.

VSpecifically, the data of Table 7-6 represents two examples

to be discussed. The first two columns of Table 7-6 reflect two

inflow level sets for period 1 as applied to example problem 1-2.

The third and fourth columns reflect similar inflow level sets for

example 1-3. There are other, perhaps more interesting, examples

which involve more releases and transfers of water between

reservoirs, but these were selected to demonstrate the network

optimization technique. In all these cases (except the last

column) all the water available at each reservoir was used to

supply demand at the reservoir or saved in the reservoir. No water

was transferred or released.

This first discussion pertains to example 1-2 of Table 7-6.

Consider the first column with inflows to the three reservoirs of

13/13/13. Referring to Table 7-2 and Figure 7-1, it is clear that

the linear cost coefficients for the benefit function are more

negative than the demand cost coefficients. For reservoir 1 , this

means that the initial allocation of water will go to the

reservoir. The question is how much water will be stored before[

any demands are met? As water is stored in all reservoirs, the

marginal cost on the nonlinear arcs for storing water increases.

At some point, the marginal cost will, be greater than the marginal

cost for supplying demand. For reservoir 1 this occurs at 11.35
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units of water. At this point, the marginal cost for storing water

in reservoir 1 is increased to -17. This is the breakpoint for

supplying demand, and the next 1.65 units are allocated to the

demand at reservoir 1. If these 1.65 units were stored rather than

* used, the marginal cost would be greater than -17 and hence, the

network flows would not be optimal.

Wlith regards to reservoir 2 and demander 2, all 13

available units are stored. At this level, the marginal cost for

reservoir 2 is -10.24. The marginal cost must increase to -10.0

before flow will be allocated to demand. Finally, for reservoir

3, the initial allocation of water went to the reservoir since

-15.7 < -15.0. However, very quickly, the marginal cost for this

reservoir drops to -15.0 and the next four units of water go to the

user (node 10). Once user 3 received 4 units, it is again

profitable to store water and the remaining water is in fact

stored. Final marginal cost for reservoir 3 is -10.19, far better

than supplying an additional 3 units to user 3 at a cost of -6.0

per unit.

For the 22/22/22 column of example 1-2, similar flows will

occur for the first 13 units. However, with an additional 9 units

* of water available at each reservoir, user 1 receives all 7 units

requested with the remaining 2.65 units being stored. In this case

the ending marginal cost for reservoir 1 is -13.22 versus -17.0

from before. User 2 now receives all 3 units demanded at a cost of

-10.0 and an additional .11 units at -7.0. Given additional flow,
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the second increment of demand at user 2 will be satisfied before

any additional storage. At the current levels, the marginal cost

for reservoir 2 is -7.0. Reservoir 3 ending marginal cost is less

than -6.0 and user 3 does not receive its second increment of

lemand. Note, in all these cases, no flow is released downstream.

This would not occur unless one of two things were to happen.V First, if an upstream reservoir has an over abundance of water such

that some marginal cost downstream (user or storage) was

profitable, or 2, if a reservoir has enough water to cause its

marginal cost to go to zero while meeting all demands. Then it

would be profitable to release water at a cost of zero rather than

store it at some positive cost (since additional storage would

cause the marginal cost to go positi.ve).

Turning now to the data for example 1-3, for inflows of

13/13/13 reservoir 1 marginal coebt goes to -17.0 with only 6.31

units of flow with the next 6.69 units going to user 1 at a cost of

-17.0. This breakpoint Is far lower than for example 1-2 due to

the significantly higher quadratic terms of Table 7-2. Reservoir 2

ending marginal coat is -10.8, still less than -10.0 for its user.

And for reservoir 3, its ending marginal cost was -3.45 (nearing

* zero).

These seemingly low ending reservoir levels are apparently

due to the high inflows in the first few periods of profile 3.

For the 18/18/18 inflows of example 1-3, the important

thing to note is that ending marginal cost for reservoir 3 is zero.
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4b In this case rather than store additional water (since all lemands

are met), 5.972 units are releasd at zero cost.

Many variations of these problems were run (not always

having the same inflows for all reservoirs) with different results

for each case.

Some interesting alternatives to these examples might be to

allow transfer of water back upstream at zero or some very low cost

thereby making it profitable to spend a few dollars to get the

water where it is needed the most rather than release it at zero

cost. Another interesting alternative would be to supply a large

amount of water to reservoir I with zero inflows at reservoirs 2

and 3. If the zero cost arcs of the system were given a large

capacity, enough water could be put into the system to meet all

demands (maximize the current return) and to drive the marginal

cost for all reservoirs to zero (maximize the future return). This

could be done using slack inflow at reservoir I at zero cost and by

putting a high penalty on releasing water to the ocean. In this

case the objective function would achieve its absolute minimum,

thus deriving the solution to the quadratic problem.

As indicated throughout this report, the reservoir contents

*at the beginning of the period do not have to correspond to the

discretized reservoir water levels used to derive the benefit

functions. The functional form of the benefit function was lerived

from the discretized levels, but this form is a continuous form and

applies for any set of water level combinations that fall within

4L
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7.1.3 Effect of ~Ton the M!odel

The main concern here is the effect that the assumed values

for QT have on the model. Naturally, all other arc cost parameters

are also questionable since selecting them is an art in itself.

* However, it is assumed that the user will have a fairly good feel

for these values. What he will not have a good feel for is the

future value of water at the end of the time horizon.

To measure this effect, the network and inflows for example

1-2 were used. Several variations of the period T quadratic

benefit functions and linear terms were examined with nearly

identical results in all cases. The results shown in Table 7-7

represent three of these conditions. This table shows all 12 of

the Q tbenefit functions as they were derived over time. For the

ti:ee cases shown, case 1 started with the assumed benefit function

of Chapter 5. Case 2 kept the same linear terms, but used the

identity matrix as the quadratic matrix. Case 3 used the same

quadratic matrix as case 1 but changed the linear terms. Observing

the first few periods of results (periods 12,11,etc.), it is quite

clear that they are significantly different. However, it is noted

that after approximately 8 periods of data (Q ) the coefficients of
4

*the benefit functions are very close In value. After 12 periods,

all three benefit functions are nearly identical. Many other

variations were tried with similar results. Consequently, it is

determined that for these problems, 9 minimum of 9-12 periods are
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w Table 7-7 £

Benefit Pinction Convergence

Period Coeff. Case 1 Zase 2 Case 3

30 0.0 0.0 0.0

BI -59.22 -59.22 -50.22
B2 -46.61 -46.61 -40.61

B3 -39.69 -39.69 -30.69
B4 .8633 1.0 1.0
B5 .5320 1.0 1.0

B6 .5226 1.0 1.0

B7 .6340 0.0 0.0

38 .4066 0.0 0.0

B9 .6770 0.0 0.0

30 -571. -351. -475.
B1 -25.38 -49.11 -22.68
32 -25.41 -32.10 -21.37

B4 .155 .770 .147

B5 .248 .430 .317

36 .313 .490 .437

37 .111 .011 .000
38 .076 .000 .000
39 .287 .263 .081

30 -203. -316. -179.

BI -19.72 -34.44 -18.93

32 -19.94 -27.00 -17.53
B3 -22.46 -29.18 -17.53
B4 .048 .420 .046
35 .154 .270 .91

B6 .266 .350 .271
B7 .031 .004 .000

38 .026 .001 .000

B9 .208 .291 .098
I'

* A

II I• I I I I II I I4
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Table 7-7 (continued)
page 2

Q 0 -171. -276. -153.

BI -18.26 -25.56 -17.90

B2 -17.89 -23.71 -15.71

B3 -20.15 -24.97 -17.83
B4 .023 .211 .023

B5 .116 .190 .121

B6 .201 .253 .214
37 .012 .002 .000

B8 .011 .001 .000

B9 .184 .287 .108

30 -134. -172. -123.
BI -17.68 -21,15 -17.67
32 -16.77 -22.52 -14.71

33 -19.14 -23.20 -16.68
B4 .014 .101 .017

85 .091 .161 .083
B6 .139 .189 .156

B7 .005 .001 .000
38 .005 .001 .000

B9 .165 .280 .112

Q7
BO -208. -260. -197.
BI -17.52 -19.58 -17.25
B2 -15.47 -20.06 -14.01
33 -16.36 -20.63 -15.35

B4 .013 .041 .007

85 .079 .133 .073
86 .113 .157 .128
87 .003 .001 .001

38 .002 .001 .000

B9 .141 .241 .104
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Table 7-7 (continued)
page 3

30 -207. -237. -197.

31 -21.01 -21.19 -20.94

B2 -14.96 -17.49 -14.24
3 33 -15.29 -17.75 -14.76

34 .114 .119 .114

35 .077 .106 .0,6
B6 .096 .120 .105
37 .029 .028 .027

38 .022 .023 .020

B9 .136 .198 .119

30 -204. -226. -199.

31 -24.48 -24,59 -24.39
B2 -15.34 -16.37 -14.34
33 -15.53 -17.06 -15.16

B4 .219 .220 .220

35 .081 .098 .082
B6 .097 .t11 .106

B7 .063 .064 .061
B8 .054 .056 .052

B9 .147 .186 .136

30 -223. -236. -220.

B1 -23.61 -23.73 -23.52

32 -14.65 -15.58 -14.32
33 -14.38 -15.79 -14.67

B4 .208 .211 .210

B5 .075 .084 .076

B6 .088 .095 .096
37 .058 .057 .055
38 .052 .053 .049

B9 .140 .163 .134
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Table 7-7 (continued)

* page 1

3 30 -1"6. -136. -174.

31 -25. 38 -26.0 -25.36

32 -16.67 -17.14 -16.43
33 -16.52 -16.96 -16.34
34 .248 .252 .252

35 .101 .105 .103

36 .111 .113 .117

37 .124 .124 .122

38 .096 .097 .092

39 .179 .190 .1,76

30 -215. -221. -213.

B1 -23.30 -29.83 -29.31

32 -13.79 -19.04 -19.58

33 -19.03 -13.28 -17.35

34 .322 .322 .331
35 .140 .142 .141

36 .141 .142 .149

37 .195 .195 .193

38 .146 .146 .144

39 .232 .238 .235

30 -249. -250. -247.
31 -25.92 -25.92 -25.92

32 -15.94 -16.00 -15."3
33 -15.74 -15.92 -15.57

B4 .274 .274 .278

35 .098 .099 .098

B6 .102 .103 .104
3-7 .128 .127 .126

38 .114 .114 .111

39 .181 .184 .178

a

_ _ _ __ ___
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required to dampen out the effect of the assumed benefit function

for period T

7.1.4 Computation Times

* This section includes a brief summary of computation times.

Table 7-8 shows the CPU times arnd 1/0 times required for these

problems. All problems were run on the University of Texas CDC

'600 system. The results indicate that the algorithm requires

approximately .0115 seconds of CPU time for each three reservoir

nonlinear network and approximately .029 seconds for each four

reservoir network.

7.1.5 Benefit Contours

Before going on to the application to the Guadalupe River

Basin, it is interesting to observe certain properties of the model

as it relates to the hypothetical examples. Specifically, for the

three reservoir problems, it i4s possible to plot iso-benefit curves

as a function of two reservoirs while holding the third reservoir

at some specified level. This may be important for some systems

* that for one reason or another require that a given reservoir be

* closely regulated and maintained at or .iear a precise level. Any

of the three reservoirs can be specified as fixed for the

algorithm.

As an example, suppose it is of interest to fix reservoir

three at 20 units of water for example 1-2. In so doing it is
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Table 7-8

Summary of CPU and 1/0 Times (seconds)

Problem CPU Time I/O Time

1 -~1 58.8 10.6

1-2 70.6 11.0

1-3 64.9 10.5

2-1 68.3 10.5

2-2 54.0 10.7

2-3 60.2 10.6

3-1 258.9 12.6

3-2 267.5 12.6

3-3 246.4 12.5

Network Solution Times

Number of Number of Average Time Per

Reservoirs Networks Solved CPU Time Network

3 5400 62.23 .0115

, 4 9000 257,6 .028

i
__..,._ -- ,-.,-.-" ... _ " . . 2 _._._ -'. ".- ., , 3
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desired to observe the resulting iso-benefit curves.

A program (CONT1) has been written which takes the desired

benefit function and target total benefits as input data. This

program then calculates and plots the desired curves of equal

benefit. Figure 7-5 shows a typical plot for this problem. In1<' this figure it is observed that a major part of the ellipses lie
outside the feasible region determined by the reservoir capacities.

There are an infinite number of these ellipses, depending upon the

target total benefit. For Figure 7-5, the center of the ellipse is

far outside the feasible region. Recall that for this problem, all

reservoirs were restricted to a maximum capacity of 25 units with 5

additional units allowed at a penalty. Thus, these curves are only

meaningful in the region of 30 units or less for each reservoir.

If the feasible region were unbounded, the center of the ellipse

would represent the maximum future benefit given reservoir 3 (f)

is held at 20 units. if f were not fixed, the true optimal
3

solution for this benefit function could be obtained using the

following:

0x ' or i -1,2,3

The results for this problem are f, 34.5, ,f 2 29. S and f 3 32

with a maximum benefit of -1140.

Now letting f3 a 32, a similar plot of benefit functions is

obtained as shown in Figure 7-6. This plot, as expected, has its

center at (34.5, 29.6) with the desired benefit of -1140. This

point indicates the maximum of the benefit function. The user
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would not operate here however since he must also consider the

tradeoffs. with the current returns. Also, the function is

zertainly not valid outside of the feasible region.

As mentioned before, some of these ellipses fall mostly

outside the feasible region. It is somewhat more useful to

concentrate on the feasible region only. Figure 7-7 has its range

limited to a maximum value of 30. For the data of example 1-2,

only parts of the ellipses are contained in this region, and the

maximum benefit attained is at the upper right hand corner of the

feasible region. In this case, f, = 30, f2 = 30 and f - 20. The2 3
value of the benefit function at this point is -1112. This is as

expected since this example attempts to force the storage of water

for the future. Given a fixed amount of water in the system, it is

unlikely that these levels would be stored due to the tradeoff of

current requirements and the fact that to reach levels of 30 in any

of the reservoirs would require that penalty arcs be used. While

this is allowed and could be profitable, it would depend on the

costs assigned to other network arcs.

Another set of plots taken from a different trial problem

* (and hence a different benefit function) had the form of Figure

" 7-8. The center of the ellipses are contained in the feasible

region. This type of curve will occur when the model letermines

that it is not too important to save water for the future, (example

1-1 data).

One interesting thing to note regarding these ellipses is

I

-
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the amount of~ rotation that they have. This rotation is an

indication that some interaction between the plotted reservoirs is

*present. If no interaction were present, the main axes of the

ellipses would parallel the x arnd y axes.

A

w, ---- -
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7.2 Guadalupe River Basin -Stochastic Case

The Guadalupe and San Antonio River Basins are situated in

the southern Coastal Bend area of Texas. From their headwaters in

the Edwards Plateau region of Central Texas, the two rivers cross

the Gulf Coastal Plains and combine into a single stream shortly

before entering San Antonio Bay. The average annual rainfall over

the two drainage basins varies from 35 inches near the Gulf Coast

to 25 inches in the area of the headwaters.

The water needs in the basins are presently supplied

largely from groundwater formations underlying the region, with the

principle source of groundwater being the Edwards and associated

Limestone Aquifer. This underground reservoir i3 a water supply

source for irrigation and for many municipalities, including the

city of San Antonio. The Edwards Aquifer is also the source of

water for the Comal and San Xarcos Springs. These springs provide

the major portion of base flow in the Guadalupe River.

Canyon Reservoir is the only existing major storage

reservoir in the Guadalupe River Basin. The reservoir provides

both water supply and flood control storage. Six small

hydro-electric dams on the Guadalupe River downstream from New

* Braunfels constitute the only other significant impoundments in the

Guadalupe Basin.

The consumptive water requirements within the Guadalupe

Basin are currently being adequately supplied from a combination of
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surface and subsurface sources. However, with the greatly

increased water demands projected for this area, it is evident that

judicious water resources management will be essential in order to

fully supply future water needs.

The major demand center for these two basins is the San

Antonio metropolitian area. The city and adjoining suburbs have

experienced rapid population growth in the past several decades,

and are projected to have greatly increased populations in the

future. The area's water needs in the past have been supplied

exclusively by pumpage from the Edwards Aquifer, however, this

municipal and industrial pumpage added to the irrigation pumpage in

the Balcones Escarpment area to the west of the city is presently

approaching the average annual recharge into the Edwards formation.

Should the increased future irrigation, municipal and industrial

water requirements continue to be supplied from groundwater, the

Edwards Aquifer will undergo drastic reductions in water levels,

diminishing springflows and severe deterioration in water quality.

As an alternative to this depletion of the Edwards Aquifer,

the Texas Water Development Board (1975) has proposed the

development of a conjunctive ground and surface water resources
a

system to supply the San Antonio area. The plan calls for limiting

San Antonio pumpage to 215,000 acre-feet annually, and supplying

the remaining water requirements with surface water conveyed

through pipelines from a system of reservoirs in the San Antonio

and luadalupe River Basins. This application will evaluate the
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proposed changes to the Guadalupe Rivet Basin.

A number of reservoir and pipeline projects were

considered as possible components in the optimal water supply

system. Of concern here is the addition of three reservoirs to go

along with the existing Canyon Reservoir. These three new

reservoirs include Cloptin Crossing, Cuero I and Cuero II. A

schematic of the proposed sytem was shown in Figure 3-16.

The deterministic solution to the Guadalupe River Basin

application was discussed in Chapter 3 and shown in the Appendix.

The deterministic inflows were taken to be the mean values of the

inflows by month over the 46 year period. The demands represented

the projected incremental demands over the 1970 requirements.

Total demands are not used since this system was designed to

satisfy the demand growth, with the assumption that the current

methods for supplying demand would continue to be used at their

current levels. In this case it was shown that sufficient water

would be available on the average to meet the projected demands for

the year 2020. Based upon this result, it is expected that the

stochastic solution sight also indicate that sufficient water will

be available.

* The stochastic problem faces many different situations than

the deterministic problem. The two most important of these are the

fact that inflows can vary considerably from the deterministic case

and that due to the uncertainties involved, the storage of water is

a much more significant factor. Recall that in the leterministic
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case, the reservoirs tended to be held at their minimum levels.

For the stochastic problem, this would generally not be the case.

The raw data for this problem was supplied by the T2exas

Water Development Board (1975) which included the proposed

reservoir design, the reservoir capacities, the benefits for

meeting the specified demands and the monthly inflow data.

The formulated model is shown in Figure 7-9. Note that

this is exactly the same model as each of the 12 periods for the

deterministic case.

As in the deterministic case, the total annual demand will

be spread evenly over the 12 months of the multiperiod problem.

This is reflected in the arc capacities going from the reservoirs

or junction nodes to the demand nodes.

Table A-3 in Part 11 of the Appendix lists the mean

inflows, which were used for the deterministic problem, along with

their calculated standard deviations. Other data for the Guadalupe

River Basin is else shown in Pert 11 of the Appendix. For the

stochastic example problems in section 7-1 , the inflow data was

assumed to be distributed normally. H{owever, a brief survey of the

data for this problem reveals that the lata is most likely not

normal. A Shapiro-Wilk (1965) test for normality was conducted

which verified this conclusion. The Shapiro- Wilk W statistic was

calculated to be .372. This value would have to be .324 or greater

to accept the normal hypothesis at the .31 level of significance.

Many water resources managers are concerned with the
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occurances of floods and their analysts typically consider the

inflow distribution for flood s to be log-normal or in some cases

log-normal Pearson type 111. Although this problem is concerned

with the operation Of a system of reservoirs under all inflow

*conditions, it was decided to test the data to see if it was

distributed log-normally. This test had to be altered some since

there were several months whose inflows were zero which is not

allowed for the log-normal case. Accordingly, the zero inflows

were ignored and a test for normality was put to the logarithms of

the remaining data. Again the results indicated that this data did

not possess the characteristics of a log-normal distributon. The

Shapiro-Wilk W statistic was calculated to be .3629.

After several other considerations were ruled out, it was

decided to simply use the emperical data as is, and supply the

random number sequence to corresponding inflows. Since the data

was already arranged for all four reservoirs by month and year, the

question of correlating the inflows between reservoirs was taken

care of. tn the earlier examples the same random number was

applied to all reservoirs. Thus, the inflows for all reservoirs in

the basin were perfectly correlated. For this problem, if the

* random number for the month of July turns out to be 38, the inflows

fo r all reservoirs will be determined by selecting the

corresponding July inflows in the year 1962 (19259 38 - 1). The

random number generator will generate a number between 1-46 from a

uniform distribution. This number will represent the desired row
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in the inflow matrix for each of the reservoirs.

One thing to note with regards to this data is the extreme

fluctuation of inflows. The most severe fluctuation occurs at the

Cuero I reservoir where in the month of July, the range of inflows

* varied from zero acre-feet in 1963 and 1964 to 648 acre-feet in

1936. Other typical fluctuations range from a low of zero to 200+

acre-feet for some months. This factor alone indicates the severe

instability and mnreliability of water supplies for this area of

Texas.

Based upon the decisions made in Chapter 6, this model was

run for 12 periods using 30 draws per level. The discretized range

of levels was selected to be (.2,.55,.9). For this four reservoir

model there will be 25 level combinations in the experimental

design matrix. At 30 draws per level, there will be 750 nonlinear

network problems to solve for each period or a total of 9000 for

the 12 periods. The Q, assumed for this problem were as shown in

Table 7-9 (col a). Tbe coefficients for the Qbenefit function

derived using the dynamic programming algorithm are shown in Table

7-9 (col b)

Before discussing the results of this application a few

points should be made. First of all, only 46 years of data were

available. Ideally, this is not enough data to attempt to

characterize the distribution of inflows and hence supports the use

of the emperical data. Secondly, the random selection of 30 draws

was done with replacement. Finally, observing Table A-4 of the
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Table 7-9

Q and 1 For Ouadalupe Basin (All Years)

a b

31 -500. -196.

32 -500. -388.

33 -1000. -82.

3 34 -1000. -86.

5 1.0 .16

36 1.0 1.32

37 1.0 .011

38 1.0 .016

39 0.0 .014

310 0.0 .019

311 0.0 .011

312 0.0 .014

313 0.0 .007

314 0.0 .010

4 '- , a i a i l I I I I I
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Appendix, the projected demands for this problem are extremely low

when compared to the quantities of water available. A strict

application of this model could be expected to yield sufficient

water to supply all demands.

Returning to the results for this problem, note the benefit

function for Q is based on the assumption that t = I is May.

Thus, the last month of the time horizon is April. Since it takes

3-I1 months for the effects of the initial conditions to subside,

these results are good for only about two months. However, if this

model were run for 24 months, the benefit functions for each of the

last 12 months would be valid representations of the future value

of water.

.he results of Table 7-9 indicate that for Canyon and

Cloptin Crossing, the initial allocation of water would be to

storage since their linear terms are less than any of the demand

cost functions. ?or the two Cuero reservoirs, the top priority is

to meet demand. Only Canyon and Cloptin Crossing have significant

terms in the quadratic function. As more and more water becomes

available these terms will eventually reduce their marginal cost to

* a level where supplying demand will be profitable. These results

* are expected since using all inflow data and 30 draws, the expected

inflows will approach the mean inflows used in the deterministic

case. The design of these reservoirs was such that they would be

expected to meet all demands over a 10 year low flow condition

given that they were full at the begining of this 10 year period.

4
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Thus, the above results using expected inflows are not surprising

at all.

In order to investigate a particularly dry period one may

impose upon the system a 10 year low flow profile for inflows.

This was done using the years 1947-1956 as the 10 year low flow

Deriod. The resulting benefit function, Q,, for May and again for

August are shown in Table 7-10. For the low flow profiles, all of

the linear terms of the quadratic are higher than they were when

the data for the entire 46 years were used. As before, Canyon and

Cloptin Crossing have the lowest linear cost terms with the two

.uero reservoirs marginal costs becoming aearly equal to the demand

marginal costs. Also, the terms of the quadratic, while slightly

more pronounced, are similar to the all years results. Again, for

both cases, the results appear to indicate that the design is

sufficient to satisfy the 10 year low flow profile. This is aot

surprising since the design was selected to meet this criteria.

The main conclusion to be drawn from this application is

that the reservoirs seem to be adequately designed (if not overly

Jesigned) to satisfy their intended purpose of safegarding against

shortages in the year 2020. The derived benefit functions could be

used to make operational decisions if this system were built.

7.3 Number and Duration of Time Periods

T'he selection of the number and length of time periods is

highly dependent upon the specific problem being considered.
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Table 7-10

Results for May and August (Guadalupe Basin)

Bi -340. -353.

B2 -536. -550.

B3 -106. -115.

B4 -98. -103.

B5 .332 .341

36 1.70 1.74

37 .017 .019

B8 .017 .019

39 .012 .013

BI0 .029 .030

311 .012 .013

B12 ,010 .014

313 .005 .006

314 .012 .013

4 1
IA
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Consequently, this section is intended to point out some of the

possibilities and concerns that the user should be aware of. The

sample problems in this chapter dealt with some of the specifics

alluded to in this section.

It first must be determined what types of decisions thet user needs to make. Is he concerned with long term or short term
information? In the long term case he may want to let a time

Deriod be 3 months or as long as a year and consider a time horizon

of 20 years. This might be the case if he were concerned with

using the results of the model for the evaluation of the design of

a proposed new system.

On the other hand, if he is more ioncerned with the current

operation of a system, he nay want to specify his time period as a

month or perhaps a week and run his model for from 1 to 5 years.

In either case, he may also be limited by the available data.

Specifically, he will require access to historical runnoff data

which may not be available for a given choice of time duration or

horizon.

These two options (and there are several others) require

different sets of data and assumptions. For instance, in the case

of current operations, he would be much more concerned with the

accuracy of the model parameters such as the benefits for supplying

demand and would require better knowledge of the inflow statistics.

Another concern might depend upon the nature of Iroughts in

the basin of concern. Some parts of the country are more sensitive
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to short term droughts due to their immediate effect on agriculture '
or livestock whereas others may experience droughts which may last

for several years.

in any case, he w~ould like to select a time horizon that is

& far enough into the future such that the initial estimates of the

quadratic benefit function for period T has little effect upon theVfunctions derived for the early periods. For most of the trial

data, and for the sample problems a duration of one month was

considered and the time horizon was restricted to one year.
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3. Summary

A review of the literature indicates that although much

work has been lone in determining optimal water resources

management policies, only in the last 5-10 years have authors begun

to address larger systems to include stochastic inflows and

interactive benefits realized for a multireservoir system. This is

important for many reasons. First of all of primary concern in the

development of a realistic water resources model is the inclusion

of the future uncertainties of water supplies. Because of this

uncertainty, current decisions regarding the storage or release of

water have a direct effect on future operations. Provisions must

be allowed for continued operations in the event of future

shortages or oversupply.

To evaluate the system given future uncertainties, it is

felt that through the optimal operation of a multireservoir system,

greater benefits can be realized than through the individual

optimization of each reservoir. This joint benefit stems from the

ability to transfer water between some reservoirs in the system and

ireates the need for a means of representing and evaluating these

Interactive effects. This is handled by generating a nonlinear

212
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with uncertainty. This algorithm combines the techniques of

dynamic programming, netirork flow programming and regression

analysis in a unique way. A principle feature is the

* representation of the value of the recursive function as a

nonlinear function. This functional representation greatly

relieves the dimensionality problems usually associated with large

d~ynamic programming problems. This benefit function is derived by

,ising the network programs to optimize the model. These optimal
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results are then used in a least squares regression model which

fits a full guadratic to the data. This benefit function is then

translated into network parameters and these become knxown values

for the solution of the network in the next dynamic programming

period. By following the typical dynamic programming recursion

methods, the benefit functions for each period are ultimately

generated and can then be used to evaluate decisions in an

operational context.

Using the above mentioned algorithm, these procedures are

applied to a water distribution problem. Several example

applications using hypothetical systems are evaluated to verify and

demonstrate the approach. An application is then made to the

luadalupe River Basin in Texas. This application involves a

proposed four reservoir system for this basin designed to satisfy

the projected demands of the year 2020. The results showed the

Texas Water Development Board four reservoir design to be more than

adequate to meet the projected demands.

One of the primary advantages of this model formulation for

the water resources application is the ease of providing the

required data. Since the multiperiod model is simply multiple

copies of the single period model, only data relating to changes

need be provided for each new period. The program automatically

adjusts the network parameters to account for the newly derived

quadratic form. Thus, the only new data that needs to be supplied

is the -.hanging inflow parameters. These are simply read in for
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each new period as the model progresses through time. Great

flexibility is allowed here since the user can model any inflow

profile he chooses. Periods of long drought are often of concern

to water resources managers and this can easily be modeled. Inflow

data can be provided to represent the 10 year low flow condition

for the given basin. Alternative basin designs can be evaluated

under similar rainfall conditions. "hanging demands due to

seasonal requirements or due to economic pressures can also be

modeled.

Another very important "flexibile" capability allows the

user to stop the process at any time and to restart from that point

at a later time. This is due to the functional expression for the

benefit function which is stored in quadratic form and can very

easily become the starting point for a later trial.

The flexibility of this model is not limited to the items

mentioned above. There are a myriad of factors that can easily be

changed to allow the user to model almost any situation desired.

The entire process of using a generalized network model

adapted to solve quadratic forms, regression analysis to derive a

functional expression for the future value of water and dynamic

programming to model the multiperiod decision process represents 4

unique combination of these techniques as applied to the

multiperiod multireservoir water resources stochastic problem.

Using the algorithms and methodologies derived in this research it

is felt that this model can have several practical applications in
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areas other than water resources.



APPENDIX i,

'This appendix is livided into three parts as indicated

below:

Part I Data sets for the example problems

Part 71 Guadalupe River Basin

Part III Klow charts

217
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PartI

Data Sets for the Hypothetical Problems

Tables A-i and A-2 show the actual inflows used for the

hypothetical problems. Table A-I shows the inflow Iata for the

three reservoir problem for inflow profiles a, b and c of Figure

7-4 respectively. Table A-2 shows similar data for the four

reservoir problem.

,he network parameters for these examples were shown in

Chapter 7.

..... __7 =Z .
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Table A-1

3 Reservoir Inflow Data

Profile q Profile b Profile c

Month Mean Std.Dev Rean Std.Dev Mean Std.Dev5.0 5.3 1.8 1.5 3.o 1 .512 3.3 3.0 1 .6 1.2 2.5 1.9
2.2 1.9 1.0 .9 3.2 1.0
7.2 6.0 2.3 2.0 4.0 2.0

' 6.0 5.0 1.8 1.6 4.2 2.1
5.0 4.3 1.4 1.1 4.4 2.2
7.5 6.5 3.0 2.5 5.0 2.5
6.0 5.0 2.8 2.2 4.9 2.5
4.0 2.7 1.5 1.3 5.2 2.0
6.9 6.0 4.0 3.2 6.0 2.3

9 5.2 4.5 3.2 2.6 6.3 2.7
3.0 2.5 1.6 1.0 6.7 3.0
6.0 5.5 4.1 3.2 7.5 3.23 4.0 3.0 3.3 3.0 3.0 3.9
3.5 2.6 3.0 2.6 '.3 3.4
5.2 4.9 4.2 4.0 6.0 3.0

7 4.2 3.4 3.5 3.3 5.3 2.9
3.o 2.5 3.2 2.9 6.0. 3.0
4.2 4.0 5.2 4. 5.30 2.5

6 3.5 3.3 4.2 3.4 4.2 2.1
3.2 2.9 3.0 2.5 5.2 2.6
4.1 3.2 6.0 5.5 4.0 2.05 3.1 3.0 4.0 3.0 3.4 1.1
3o.0 2.6 3.5 2.6 4.2 2.1
4.0 3.2 6.8 6.0 3.0 1.54 3.2 2.6 5.2 4.5 2.5 1.4
1.6 1.0 3.o 2.5 3.2 1.6
3.0 2.5 '.5 6.5 3.0 4.0

3 2.8 2.2 6.0 5.0 9.4 4.'
1.5 1.3 4.0 2.7 7.8 3.9
2.3 2.0 ".2 6.0 12.5 6.3

2 1.9 1.6 6.0 5.0 11.9 5.9
1.4 1.0 5.0 4.0 13.2 6.61.3 1.5 5.0 5.3 15.0 7.5

1 1.6 1.2 3.3 3.0 12.8 6.4
1.0 .9 2.2 1.8 14.0 7.0
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Table A-2

4 Reservoir Inflow Data

Profile q Profile b Profile c

Month Meen Std.Dev Mean Std.Dev Mean Std.Dev
12 15.0 7.5 4.0 2.0 4.0 2.0

113.O 9.0 2.0 1.0 2.0 1.0
12.0 6.0 3.0 1.5 3.0 1.5
24.0 12.0 2.5 1.25 2.5 1.25

1i 13.5 7.0 6.0 3.0 6.0 3.0
14.5 7.3 3.0 1.5 3.0 1.5
11.0 5.5 4.2 2.1 4.0 2.0
23.0 11.5 3.6 1.5 4.0 1.9

10 12.4 6.4 9.0 4.0 4.0 4.0
13.9 6.9 4.0 2.0 4.0 2.0
10.0 5.0 5.4 2.7 6.0 3.0
21.0 1'3.5 4.7 2.3 5.0 2.5
11.3 5.4 10.0 5.0 10.0 5.0
12.6 6.3 4.6 2.3 5.0 2.5
9.0 4.5 6.6 3.3 7.5 3.75
20.0 10.0 5.5 2.9 6.2 3.1

5 f0.2 5.1 12.0 6.0 12.0 6.0
11.4 5.7 5.0 2.5 6.0 3.0
3.0 4.0 7.8 3.9 9.0 4.5

15.0 9.0 6.9 3.5 7.5 3.75
7 9.1 4.6 14.0 7.0 10.0 5.0

10.2 5.1 6.0 3.0 5.0 2.5
7.0 3.5 9.0 4.5 7.5 3.75

16.0 9.0 5.0 4.0 6.2 3.1
6 5.0 4.0 16.0 5.0 9.0 4.0

9.0 4.5 7.0 3.5 4.0 2.0
6.0 3.0 10.2 5.1 6.0 3.0

14.0 7.0 9.1 4.6 5.0 2.5
5 6.9 3.5 19.0 9.0 6.0 3.0

..q 3.9 8.0 4.0 3.0 1.5
5.0 2.5 11.4 5.7 4.0 2.0

12.0 6.0 10.2 5.1 4.0 2.0
4 5.9 2.9 20.0 10.0 4.0 2.06.6 3.3 9.0 4.5 2.0 1.0

4.6 2.3 12.6 6.3 3.0 1.5
10.0 5.0 11.3 5.4 2.5 1.25

I . .. .
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Table A-2 (continued)

3 4.7 2.3 21.0 10.5 10.0 5.0
5.4 2.7 10.0 5.0 6.0 3.)
4.0 2.0 13.8 6.9 9.0 4.0

:3.0 4.0 12.4 6.2 7.0 3.5
2 3.6 1.8 23.0 11.5 16.0 9.0

4.2 2.1 11.0 5.5 9.0 4.5
3.0 1.5 14.5 7.3 13.0 6.5
6.0 3.0 13.5 7.0 11.0 5.5
2.5 1.25 24.0 12.0 24.0 12.03.0 1.5 12.0 5.0 12.0 6.0
2. 1.0 19.0 9.0 19.0 9.0
4.0 2.0 15.0 7.5 15.0 7-5
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Part 1I

Guadalupe River Basin

In Chapter 3 the problem of water distribution for the

Guadalupe River Basin, deterministic case, was discussed. The

basic determiistic network for each period is shown in Figure A-I.

The inflow data and results are shown here.

The single period model of Figure A-i for this problem

remains the same for all 12 periods. For this particular example,

all arc parameters also remaine the same for all periods. This

means, for instance, that the benefit for demand and the amounts

demanded are equal in all periods. This will most likely not be

the case in a realistic situation and can easily be changed.

Table A-3 lists the deterministic inflows (the means) along

with their calculated standard deviation (which are not used in the

deterministic case) for each of the four reservoirs. These

deterministic inflows are the fixed external flows for the

reservoirs in the corresponding period. For the 12 period model,

the inflow data from 1925-1970 was averaged by month to yield these

results.

The raw data for this problem was provided by the Texas

Water Develooment Board. They previously adjusted this data to

reflect the actual expected inflows for these reservoirs over this

time horizon given that they h-d been in existence. This same raw

.--...-. -- '- ..~-
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S)

Table A-3

Guadalupe Basin Inflows By Reservoir

Canyon Cloptin Crossing

Month Mean Std.Dev Mean Std.Dev

1 18.04 23.17 5.87 9.85
2 13.87 20.45 6.67 9.96

3 20.48 19.73 7.00 7.67

4 23.02 23.07 8.65 10.01

5 32.09 33.00 11.33 15.53
6 24.67 37.80 7.22 8.64
7 17.26 34.84 3.98 5.09

3 7.98 9.61 2.07 1.57

9 20.29 40.62 4.93 11.23
10 20.48 26.68 4.43 7.29

11 12.74 13.93 3.70 5.30
12 14.61 14.21 4.50 5.87

Cuero I Cuero II

Month Mean Std.Dev Mean Std.Dev
1 30.48 42.86 5.07 10.06
2 33.15 47.70 5.91 9.57
3 30.74 26.98 4.41 6.91

4 50.39 63.86 6.43 12.40

5 64.02 37.43 12.33 20.15

6 42.67 49.30 12.87 20.39
7 37.93 101.97 3.11 4.28
3 13.76 35.50 2.00 3.66
9 24.80 47.49 13.04 53.24

10 27.22 48.37 13.26 45.09
11 29.33 47.52 3.59 7.60
12 23.98 31.77 2.04 3.10

- -v ~ -~----'------~---_ ____ ____ ___

....L " r.n. . ..;
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data will be used later for the stochastic case.

The objective for this problem is twofold. The first is to

determine if enough water will be available on the average to meet

the projected demands for the year 2020. Secondly, what will be

the distribution of water for each of these periods, ie., what is

the decision set?

Accordingly, the capacity of the demand arcs are set to

1/12 of the total annual demand for the year 2020 for each demand

location.

Figures A-2, (a,b,c,d) represent the 12 copies of this

single period model. These 12 periods are linked together and the

last period is linked back to the first. To run this problem it

wgas necessary to give each of the reservoirs an initial level of

w~ater. To approach this problem from a worst case position, each

of the reservoirs was given an initial level of just 5 units of

wa t er.

Table A-4 shows the capacity of the proposed reservoirs,

their initial conditons, their minimum requirements and the annual

demands placed upon each demand point. The auxillary demands

listed are intended to account for the possibility of reducing the

reliance on te Edwards Aquifer by supplying more water from the

reservoir system. For this problem, the period 1 data represents

January and period 12 represents December of the year 2020. Note

that since this is a linked problem any month could be used as the

starting point and run for 12 periods. The results would have been
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Tablq A-4

Guadalupe River Basin Capacities
(1000 acre feet)

Basin or Initial %linimum Annual Auxiliary

Junction Capacity Conditionsftea'mts Demands Demands

Canyon 386.2 5.0 3.0 2.0 24.0

Cloptin 147.0 5.0 3.2
-rossing

Cuero 1 1416. 5.0 42.0 23.5 360.

Cuero 11 1450. 5.0 50. - ---

Seguin ... ......- 17.7 240.

Victoria --- .... 471.3 1200.

Totals 3399.2 98.2 513.5 1924
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the same.

The results indicate that enough water will be available on

the average to meet all demands for all periods. Since there was

no penalty assessed for releasing water into San Antonio Bay, and

no reward for building up levels, the reservoirs tended to be held

at their minimum levels. Given no penalty or reward for doing

otherwise, this is what one would expect with known fixed inflows

and demands.

The same i.nput data was used for the stochastic application

to the luadalupe River Basin. In Figure 7-9 the stochastic

(nonlinear) single period network model was shown with all arc

parameters specified. For this problem, use of the mean and

standard deviation would imply that the raw inflow data could be

characterized by some probability distribution. Since this was

determined to be infeasible, the emperical data was used. The

emperical data was provided by the Texas Water Development Board.

For the month in question, a random number was drawn which

corresponds to the inflows for a given year. The inflows for the

other three reservoirs were then chosen to be from that same year,

thus correlating all reservoirs for this basin.

U-. --. - ---



232[

Part III

Flow Charts

This part of the appendix includes the following:

[.A. A schematic of the 13 special or new programs which are

required for "his problem showing the general relationships between

them. (Figure A-3)

3. A brief description of the 13 programs of the schematic.

C. Flow charts for most of the programs shown in the schematic.

Only the logic required for determining the benefit functions using

the ordinary least squares solution methodology is flow charted.

The logic required to calculate weighted least squares coefficients

and many of the other statistics that were determined in this

report i.s not shown on the flow charts. This logic is however,

still in the computer program for future access.
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Part C

Brief Description of Flow Charts

NETGA This is the main program for this problem. This program

calls the others as shown in schematic B. It also reads

some of the reservoir and runoff data, sets up the design

matrix of reservoir levels and makes the adjustments for

the linear arcs and Q matrix. Also, all calculations for

the benefit function coefficients for both ordinary and

weighted least squares are done here. The statistical

data is mostly computed in this main program.

READG This subroutine reads the network data. It has been

modified to read the reservoir data as a part of the node

input. The nonlinear arc information is read here as part

of the arc data. This includes a linear cost term for the

full quadratic. The all artifical arc basis is set up

here, and the Q matrix is read.

ORIGSG Revised only to account for the nonlinear arcs.

RNORM RNORM and DRAND are functions used to derive the random

numbers. RNORM is used to return a random number from a

normal distribution with zero mean sad a standard

deviation of 1. DRAND is used to return a random number

between zero and one from a uniform distribution. These

functions are not flow charted in Part C.



- . .. . . -- i n n

235

FIXINV This subroutine performs all the transformations on the

input data to define the necessary terms for the full

quadratic design matrix.

TRNFIX This subroutine transforms the three input variables into

the full 9 variable quadratic: (the 10th term is the

constant which is added to this list in FIXINg). The

logic herein is general and will perform the required

transformations for a full quadratic given any number of

variables.

INVERT This subroutine performs all required matrix inversions.

For the selected methodology it is only called from NETGA.

However, for calculating the WLS data, it is also called

from FIXINV. This program is not flow charted in Part C.

PSAINS2 This is the routine that masterminds the solution process

of the network. It is a modification of the subroutine

PGAINS which solves the network with gains problem using

the primal approach.

NLMF1 This subroutine is called by PGAINS2 to determine the

maximum flow change allowed in the nonlinear arcs which

causes its marginal cost to be zero. This amount is

returned to PGAINS2 and compared with MF which is the

maximum flow change allowed by the linear arcs. The

appropriate arc is deleted from the basis through the use

of the usual network subroutines and an entering arc is

selected.

-- nlm i l i l l l l l
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NLCOST This subroutine assists in the above process by

determining the cost to be associated with the nonlinear

arcs. 3y knowing the costs that are attributed to all

arcs, the entering arc can be selected. These costs are

also needed for the PI update.

NLARCS This subroutine examines the basis after the tree has been

updated to determine if and how many nonlinear arcs are in

the basis. If there are no nonlinear arcs in the basis,

PGAINS2 calls DUAL (an existing subroutine) to update the

PI values in that part of the tree rooted at the terminal

node of the entering arc. However, if there are any

nonlinear arcs in the basis, then all PI values rooted at

the origin of the nonlinear arcs, as well as those beyond

the entering arc must be updated. In this case, PGAINS2

calls NTLPI which in turn calls DUAL1.

NLPI This subroutine is used to specifically find the nonlinear

arcs that are in the basis and to appropriately flag them

for use in the PI update.

DUALI This subroutine is used in lieu of DUAL for the PI update

in the presence of nonlinear arcs.

All of the above programs with the exception of RNORM/DRAND and

INVERT are flow charted on the pages that follow.
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EPNEG: =-.0001 EPPOS: =.0001

~CALL MUMD
•PB(N): =0 PI(N): - 0 IMAT: =0 JUDT: =0

* allL ORIG (N,LISA,LISN,L)

/ For KK - 1 to L

/K: = r.TSA(K<K) J: T T(K)

/ /For 11 1 to IR
/ / Y J #IRESB(II) /N

/ / ISUEK (I) :K

/ Y H(K) < 9998. IN

/ PB(J): = K PI(J): = 9999.

CALL TEM

Y\ L - 0 I

/ For K -1 toL

/ K: - LISAKK) J: O(K)

/ / For l tom IR
/ / Y J IiD(1I) N

I L (II): K

/ Y1(K) < 9998. N

/ PB.(J) : - -K Pl(J): -9999.

CALL TRET (N)

IT: 6

CALL PGANS2(1ErR.IT)
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RMAD MSEE,NN,rf,IT,IUP,TVAUIE

NIR: =2*IR + (2**IR) + 1

/ For I Ito IM

/ ICV: ICV+ 1

: =2*[R + ICV +1 IDBG: =NIR -NV

rTX: = T M :=M

REDNSUC M.EVERY, nDEEr IDEC

LATIIASr: =IPMSESr + IT - 1T

y ILASr >12 IN

ILAST: =IIASr - 12

A ILAS > 12 N

MEAD CAP, RL, ICJRV

Y ICUEE= 3 N

/For I -1to IR

MEAD ThL(I) , ZSIG(I) , PRD(I)

READ DAEMP

IM: =2 IX: 2**IR flKCUNT:1
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I. ~ TRIX

/ForI1-1to IX

/ S(I,.J)- - KL(K)*CAP(J)

/K: K+2 II: II+IX/ID

/ I K: =

n(CUNr: fl(OLINT+ l ID*2

Y flXJE? IR IN

---- b.STRIX

IC: - x+1

/For J - 1to IR

/s(i,J): - fm(2) *CAP(J)

Ici: -IC + I.

K: 1. 1C2: -IC1+IR-1

JU

J1

/For I ICI toIC2

/S(I,J): -IM~(K)*CAP(J) J: =J+1

iCi: IC2+1 1C2: 1C2+IR K:= K+2
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K >NN I

RMD: =AX i~ ll

ISIG: 0

*/For 1 1to NIR

/ U.Z'V2(I): =0 ZZT(I): 0

/ /For J 1to NIR

/ VI'@A (I,J): = 0

FO/ oM

/ YICEMVE 3 N

/ IPEV: 23+10*DRAND(1) ZZ:- RNOR4(0.,1.,l)

/ ISE: - 427964514382

/ / For K =lto NIR

/ / / For KK -Ito IR

/ / / Y ICURVE -. 3 N

/ /RV- DAEMP(I1UE,ILASr)

/ / / - 302

/ / ZZ?(J: - 243(IK() ZZSIG: =ZSIG(IQ()

/ / / RV: -ZZMV+ZZ*ZZSIG

/E / /=1 N

/ / /RV:=0y Y\ RJ0 N

/ / /RV: =0

/ / /RP(I): RV
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/ /ISIG: =ISIG+1l

/ / Fr J 1to IR

/M / i(J)- RPV (J) + S (K,J)

/ / / D=F: A=(J -N A.(J)

/ / /DFF 0 N

/ / /F(ISUEK(J)): =DDT F(IAMK(J)):-DnhT

/ / (ISUK (J) ) :=D= C (IAOK (J)):--D='

/ AMT (J): AMS (J)

/ /CALL PGAIS2 (I=E, TT)

/ / STOP

/ /ZT(K):IDS SUAX2():=S(2(K)+ZT(K)**2

/ / ZZT(K) :ZZT (K) +ZT (K) ZZZT(I,K): = ZT(K)

/ /For IV= 1to NIR

/ /ForJV = Ito NIR

(IVJV) :--ZT (IV) *zwr QV) +VMAT (IV,JV)

PMD: = FLOAT (MD)

/ForI1 1to NIR

/ZZT (I): ZZT (I) /PMD

Eb I o I lto NIR andcJ= I toNIR

/ V)w(I,J) :-(VMA(I,J)-PMD*ZZT(I)+ZZT(J) )/gPD-1)*RMv)
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/ For I = to NIR I

For J = 1 to NIR

/ / VMT(I, J) :=0

/ For I = 1 to NV

/ / For J = 1 to NV

/ / / For K = 1 to NIR

/ / / VMT(I,J):=VMAT(I,J)+XrV(I,K)*XMX(K,J)

/ For I = 1 to NIR

/ / For J = 1 to NIR

/ /U, = 0

/ For I = 1 to NV

/ / For J = 1 to NV

/ / / For K = 1 to NV

/ / / X I(I,J):= (I,J) +XI(I,K)*VMAT (K,J)

/ For I = 1 to NIR

/ / For J = 1 to NIR

/VMAT (I,J) =0

/ For I = 1 to NV

/ / For J = 1 to NV

/ / / For K = 1 to NV

/ / / VMT(I,J):--VMT(I,J)+XTV(I,K)*XTXI(K,J)

/ For I = 1 to NV

/, SELS(l): = SQ I I III(II))
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/ For I =I to NIR

/ / For J = 1 to NIR

VMT(I,J): = 0

/ For I = I to NV

/ For J = 1 to NIR

/ / / For K = 1 to NV

V /T (I,J) :--VMAT (I,J) +XTXI (I,K) *XMX (J,K)

/ For I = 1 to NIR

/ YV(I) : = 0

/ For I = I toNV

YVC(I) :=YV) (I) +VMAT (I, ,J) *ZZT (J)

WZ: = YVEC() NX: = NV -1

/ For I = 1 to NX

/F QQ(1,I): YVEC(I+1)

IT: = IT- 1

ILAST: - AST - 1

* MLAST=Q0 N

IIASr: = 12

/ For IK= 1 to IR

/ HL(NLIB(fl)): =QQ(1,IK)

K: =IR + 1

-a -[

-- ,-4, - - " -.... ... ]L J . .. . - "J-' ": '
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/ For 1 I to IR

/ Q(II): - QQ(1,K)

/ K:=K+1

IP: = IR - 1

/ For I = 1 to Ip

/JJ: =-I+1

/ / For J - JJ to IR

/ / .Q(IJ): QQ(I,K)/2

/ / Q(J,I): Q(I,J)

/K: = K+I

PERIOD REDZbU, ZSIG

-- PERTOD
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REAJD3

READ N

M: = 0 SLACK: N+l N: =N+1

/ For I = 1 to N

/ B(I): = 0

IR: =0

READ

READ I,BF,BS,CS, IRESEV

A 1 0 N

%-- ARCS

B(I): 3F ES(I): =ISEV

A IFWEV = 0

IRESB (IRESEV): = I AT (IRESEV): = B (I)

IR: = IR+I

A - READ

* Y \ BS0 N

J: = I I: = SLACK J: = SLACK LOE: = 0

LOWER: 0 UPPER: = BS UPPER: =- CST: = CS

COST: = CS GAIN: = I GAIJN: = 1 FLOW: - 0

FLOW: = 0 NONLIN: = 0 NONLIN: = 0

CALL ORIGSG (I, J, LOWER, UPPER, COST, GAIN, FOW, NONII4)

READ
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ZALL ORIGSG (I , J, LOER, PPE, OSr, GAIN,,n'N Nq)

AIXS

LOWER: - 0 COST: =9999. GAI!N: = 1. J: -- SLACK NCNI:=0

/For I = 1 to N-1

/ HF:=B(I) UPPER:=ABS (BF) FUW:=UJPPER

/ CALL ORIGSG(J,I,.... ) - CALL ORIGSG(I,J....

T14: = M M: = 0

For K = 1 to LM

J: T(K) M: = M+I

1 CALL TEMS (K,J)

RED NNL

/ For K= toM

A NfLI(K) 0 0

For I = i to NONL

/MRAD Q(I, J) FOR J=l1 to NOaL
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M:LUS1 : N + 1:=-

/ For 11 = P1 to S1

/ j (II): P0(II) + 1

Y\ P(I+1) : m N

mpoI: = M - po(I+1) +~ 1

/ForL = 1to MP1

NLflN(K+1) :NLIN (K) (K+1) :-HL(K) H(K+1) :-H(K)

B (J) : -B (J) +WWAER*GAJN NLIN(K) : =NOLlN H (K) -0

Y\ NONLIEM 0 N-

!, (K): H H(K)

FIE:= FXD+ aOST*r.WER

REIVRM
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FIXINV (IR)

NOB: NIR NM: =IR+ 1

/ForI1 1to NV

/ V(I): 0

/ForIFlC1lto NIR

I=

ForJ = 1to IR

/ V(NM): =ZZT(fl()

CALL TIWIX(V,IR,INV)
Fo K = 1to W
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TRFIX (V, IR, INV)

IRPIDJS1:I + 1 IFMI: =IR - 1 IRX2: IR*2

V(fl'W): - V(IRPUJS1) K: =1

V / For J = IPPWS1 to IMX2

/V(J): - V(FQ)**2 K: =K+1

I'(I': = INV - 1. 1: =2*IR+l KK:1

/ ForJ = Ito IRfN1

/KK: KK+ 1

/ /For K = KKto tR

/ V(I) = V(J)Wv(yo I: = +1

REflJM
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INTIAL

ITER:O 0IST: 1

CALL rvtirPUT

CALL SEL1C (IST,iE,DE,IFI)

Y FIN =O N

FelumITER: =ITER+l

LEAVE

Y\ KE( < N

MEE:=ABS (F (-KE) *A(K) MFE: C (ME) -F (IK)

CALL PAMhPG (FE, IE,JE, LISA, LISN

CALL MFLCG (LISA,LISN ,IC,K I lC ,W4)

CALL NIM (DEL, CE ,I=L,MMNL,LISA, IC)

Y MFE >MF N

KL: = E p=ME

/For I Itol 1C
y MM = LISA (1) INI

/ IIC: I
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MF: 4041 KL:-=KIMN For I + 1 to IC

A Y Ia2-LISA (1) N

CALL Ptaj4(LTSA, LISN, IC,MF)

y KE '>0 N

F(KE): ME1) + MF

Y K INTW#

CAL LC ISN

CHAN E:=J

CHANGESI

j L K
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\Y KE -L IN

CALL CYLE(E,B'T,COST) CLL NLPI (K)

PI (IE) : = COST/ (H'r-l) -p SELEC

-p ~IAL

BASIS

y-KE =KL N

CALL T' G (KL,YE)

Y\ It L0 IN

CALL LPI ()

CALL CT L (IE)

BASI

\s=I

-KE =, ,K
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NU4 (DM,KE, 1KNL,L,LIlSA, IC)

MN:-9999

/ForJ = Ito NCNL

IH:= 0

/ForL = Ito IC

/ K: = LISA(L)

/ \ K 0 I

Y MI(K) =0 NLIN(-K) 0 IN

/ M~: = N(K) ID: = NLIN -K)

/ D~DEW(ID): DEW UNl'D):

/G(T(K))/A(K) GOK)*()

/ICM: -1 CG-1

/ln KJL= K IZ: =K

Y KE 0 N

Y MN (IM) =0 INNI(-E

IND~: -NIN(WE) ID: = MLfl (-KE)

MZM) 1 DELG (1D): -A (-KE)

1CC K12L: KE ICHG: - 1 KENL: -=K

Y IHG0 N

~EIV~JDIV: -0
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/ For I I to N

/ LIM: =0

/ / For J - 1 to NCqL

/ / , CIM: = CLIM + Q(I,J)*DELG(J)

/DIV- = CL24DE:LG(I)+DIV
Yk ~ DIV_ 60 /

I F NM: = -DE:L/ (2*DIV)

01

'I

-- •_-, i ,, is_ _ _ II *1
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/ For I=1 to NCNL

/ K: NLB(I) H(K): 0

/ / For J = 1 to NOL

/ / KK: NLIB(J)

/ / H(K): H(K) + 2*Q(I,J)*F(KK)

/ H(K): H(K) + HL(K)

RE'IW

NLAR2S

IMmaL: - 0

/ For I = 1 toN

/ KB: = PB(I)

/ Y KB = N

/B 4 K 0 N

/Y NLIN -KB) =01N IN \NL.M(KB) 0 Y

I InI: II L+ IL (IcL):KB
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/ForI1 1to N

ICH (/ 0

IflMM4: 0 KJ: FE

Yy K> 0 N

II: T (KT)I

Y K <0 I

11: 0 O(-KJ1

JUNCr: =0

Y v < 0 N

ICHK(O(-K)): 1 =CKTFJ) 1

Y \ICHK(T (-KJ)) 0 N Y ICM (0(F.7) 0
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